
Python Primer 2: Functions 
and Control Flow

© 2013 Goodrich, Tamassia, Goldwasser 1Python Primer 2



Python Primer 2 2

Program Structure
q Common to all control structures, the colon character 

is used to delimit the beginning of a block of code that 
acts as a body for a control structure. 

q If the body can be stated as a single executable 
statement, it can technically placed on the same line, 
to the right of the colon. 

q However, a body is more typically typeset as an 
indented block starting on the line following the colon. 

q Python relies on the indentation level to designate the 
extent of that block of code, or any nested blocks of 
code within.

© 2013 Goodrich, Tamassia, Goldwasser



Conditionals

3© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Loops
q While loop:

q For loop:

q Indexed For loop:

4© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Break and Continue
q Python supports a break statement that 

immediately terminate a while or for loop 
when executed within its body.

q Python also supports a continue statement 
that causes the current iteration of a loop 
body to stop, but with subsequent passes of 
the loop proceeding as expected.

5© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Functions
q Functions are defined using the keyword def.

q This establishes a new identifier as the name of the 
function (count, in this example), and it establishes 
the number of parameters that it expects, which 
defines the function’s signature.

q The return statement returns the value for this 
function and terminates its processing.

6© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Information Passing
q Parameter passing in Python follows the semantics of 

the standard assignment statement.
q For example

is the same as

and results in

7© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Simple Output
q The built-in function, print, is used to 

generate standard output to the console.
q In its simplest form, it prints an arbitrary 

sequence of arguments, separated by spaces, 
and followed by a trailing newline character.

q For example, the command print(‘maroon’, 5) 
outputs the string ‘maroon 5\n’.

q A nonstring argument x will be displayed as 
str(x).

8© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Simple Input
q The primary means for acquiring information from 

the user console is a built-in function named input. 
q This function displays a prompt, if given as an 

optional parameter, and then waits until the user 
enters some sequence of characters followed by the 
return key. 

q The return value of the function is the string of 
characters that were entered strictly before the 
return key.
n Such a string can immediately be converted, of course:

9© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



A Simple Program

10© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2

q Here is a simple program that does 
some input and output:



Files
q Files are opened with a built-in function, open, that 

returns an object for the underlying file.
q For example, the command, fp = open(‘sample.txt’), 

attempts to open a file named sample.txt.
q Methods for files:

11© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Exception Handling
q Exceptions are unexpected events that occur during the 

execution of a program.
q An exception might result from a logical error or an 

unanticipated situation. 
q In Python, exceptions (also known as errors) are objects 

that are raised (or thrown) by code that encounters an 
unexpected circumstance. 
n The Python interpreter can also raise an exception. 

q A raised error may be caught by a surrounding context 
that “handles” the exception in an appropriate fashion. If 
uncaught, an exception causes the interpreter to stop 
executing the program and to report an appropriate 
message to the console.

12© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2



Common Exceptions
q Python includes a rich hierarchy of exception classes 

that designate various categories of errors

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 13



Raising an Exception
q An exception is thrown by executing the raise 

statement, with an appropriate instance of an 
exception class as an argument that 
designates the problem. 

q For example, if a function for computing a 
square root is sent a negative value as a 
parameter, it can raise an exception with the 
command:

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 14



Catching an Exception
q In Python, exceptions can be tested and caught using a try-except 

control structure.

q In this structure, the “try” block is the primary code to be 
executed. 

q Although it is a single command in this example, it can more 
generally be a larger block of indented code. 

q Following the try-block are one or more “except” cases, each with 
an identified error type and an indented block of code that should 
be executed if the designated error is raised within the try-block.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 15



Iterators
q Basic container types, such as list, tuple, and set, 

qualify as iterable types, which allows them to be 
used as an iterable object in a for loop.

q An iterator is an object that manages an iteration 
through a series of values. If variable, i, identifies an 
iterator object, then each call to the built-in function, 
next(i), produces a subsequent element from the 
underlying series, with a StopIteration exception 
raised to indicate that there are no further elements.

q An iterable is an object, obj, that produces an 
iterator via the syntax iter(obj).

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 16



Generators
q The most convenient technique for creating iterators in 

Python is through the use of generators. 
q A generator is implemented with a syntax that is very 

similar to a function, but instead of returning values, a 
yield statement is executed to indicate each element of 
the series. 

q For example, a generator for the factors of n:

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 17



Conditional Expressions
q Python supports a conditional expression syntax that 

can replace a simple control structure. 
q The general syntax is an expression of the form:

q This compound expression evaluates to expr1 if the 
condition is true, and otherwise evaluates to expr2.

q For example:

q Or even

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 18



Comprehension Syntax
q A very common programming task is to 

produce one series of values based upon the 
processing of another series. 

q Often, this task can be accomplished quite 
simply in Python using what is known as a 
comprehension syntax.

q This is the same as

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 19



Packing
q If a series of comma-separated expressions 

are given in a larger context, they will be 
treated as a single tuple, even if no enclosing 
parentheses are provided. 

q For example, consider the assignment

q This results in identifier, data, being assigned 
to the tuple (2, 4, 6, 8). This behavior is 
called automatic packing of a tuple.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 20



Unpacking
q As a dual to the packing behavior, 

Python can automatically unpack a 
sequence, allowing one to assign a 
series of individual identifiers to the 
elements of sequence. 

q As an example, we can write

q This has the effect of assigning a=7, 
b=8, c=9, and d=10.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 21



Modules
q Beyond the built-in definitions, the 

standard Python distribution includes 
perhaps tens of thousands of other 
values, functions, and classes that are 
organized in additional libraries, known 
as modules, that can be imported from 
within a program.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 22



Existing Modules
q Some useful existing modules include the following:

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 2 23


