
Python Primer 1: Types and
Operators

© 2013 Goodrich, Tamassia, Goldwasser 1Python Primer

Python Primer 2

The Python Interpreter
q Python is an interpreted language.
q Commands are executed through the Python

interpreter.
n The interpreter receives a command, evaluates that

command, and reports the result of the command.
q A programmer defines a series of commands in

advance and saves those commands in a text file
known as source code or a script.

q For Python, source code is conventionally stored in a
file named with the .py suffix (e.g., demo.py).

© 2013 Goodrich, Tamassia, Goldwasser

An Example Program

3© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Objects in Python

q Python is an object-oriented language
and classes form the basis for all data
types.

q Python’s built-in classes:
n the int class for integers,
n the float class for floating-point values,
n the str class for character strings.

4© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Identifiers, Objects, and the
Assignment Statement

q The most important of all Python commands
is an assignment statement:

temperature = 98.6
n This command establishes temperature as an

identifier (also known as a name), and then
associates it with the object expressed on the
right-hand side of the equal sign, in this case a
floating-point object with value 98.6.

5© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Identifiers
q Identifiers in Python are case-sensitive, so

temperature and Temperature are distinct names.
q Identifiers can be composed of almost any

combination of letters, numerals, and underscore
characters.

q An identifier cannot begin with a numeral and that
there are 33 specially reserved words that cannot be
used as identifiers:

6© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Types
q Python is a dynamically typed language, as there

is no advance declaration associating an identifier
with a particular data type.

q An identifier can be associated with any type of
object, and it can later be reassigned to another
object of the same (or different) type.

q Although an identifier has no declared type, the
object to which it refers has a definite type. In our
first example, the characters 98.6 are recognized as a
floating-point literal, and thus the identifier
temperature is associated with an instance of the
float class having that value.

7© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Objects
q The process of creating a new instance of a class is known as

instantiation.
q To instantiate an object we usually invoke the constructor of a

class:
w = Widget()

n This is assuming that the constructor does not require any
parameters.

q If the constructor does require parameters, we might use a
syntax such as

w = Widget(a, b, c)
q Many of Python’s built-in classes a literal form for designating

new instances. For example, the command
temperature = 98.6

results in the creation of a new instance of the float class.
8© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Calling Methods
q Python supports functions a syntax such as

sorted(data), in which case data is a parameter sent
to the function.

q Python’s classes may also define one or more
methods (also known as member functions), which
are invoked on a specific instance of a class using the
dot (“.”) operator.

q For example, Python’s list class has a method named
sort that can be invoked with a syntax such as
data.sort().
n This particular method rearranges the contents of the list so

that they are sorted.

9© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Built-In Classes

q A class is immutable if each object of that
class has a fixed value upon instantiation that
cannot subsequently be changed. For
example, the float class is immutable.

10© 2013 Goodrich, Tamassia, Goldwasser Python Primer

The bool Class
q The bool class is used for logical (Boolean) values,

and the only two instances of that class are
expressed as the literals:

True and False
q The default constructor, bool(), returns False.
q Python allows the creation of a Boolean value from a

nonboolean type using the syntax bool(foo) for value
foo. The interpretation depends upon the type of the
parameter.
n Numbers evaluate to False if zero, and True if nonzero.
n Sequences and other container types, such as strings and

lists, evaluate to False if empty and True if nonempty.
11© 2013 Goodrich, Tamassia, Goldwasser Python Primer

The int Class
q The int class is designed to represent integer values with

arbitrary magnitude.
n Python automatically chooses the internal representation for an

integer based upon the magnitude of its value.
q The integer constructor, int(), returns 0 by default.
q This constructor can also construct an integer value

based upon an existing value of another type.
n For example, if f represents a floating-point value, the syntax

int(f) produces the truncated value of f. For example, int(3.14)
produces the value 3, while int(−3.9) produces the value −3.

n The constructor can also be used to parse a string that
represents an integer. For example, the expression int(137)
produces the integer value 137.

12© 2013 Goodrich, Tamassia, Goldwasser Python Primer

The float Class
q The float class is the floating-point type in Python.

n The floating-point equivalent of an integral number, 2, can be
expressed directly as 2.0.

n One other form of literal for floating-point values uses
scientific notation. For example, the literal 6.022e23
represents the mathematical value 6.022×1023.

q The constructor float() returns 0.0.
q When given a parameter, the constructor, float,

returns the equivalent floating-point value.
n float(2) returns the floating-point value 2.0
n float(‘3.14’) returns 3.14

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 13

The list Class
q A list instance stores a sequence of objects, that is, a sequence

of references (or pointers) to objects in the list.
q Elements of a list may be arbitrary objects (including the None

object).
q Lists are array-based sequences and a list of length n has

elements indexed from 0 to n−1 inclusive.
q Lists have the ability to dynamically expand and contract their

capacities as needed.
q Python uses the characters [] as delimiters for a list literal.

n [] is an empty list.
n [‘red’, ‘green’, ‘blue’] is a list containing three string instances.

q The list() constructor produces an empty list by default.
q The list constructor will accept any iterable parameter.

n list(‘hello’) produces a list of individual characters, [‘h’, ‘e’, ‘l’, ‘l’, ‘o’].

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 14

The tuple Class
q The tuple class provides an immutable

(unchangeable) version of a sequence, which
allows instances to have an internal
representation that may be more streamlined
than that of a list. Parentheses delimit a tuple.
n The empty tuple is ()

q To express a tuple of length one as a literal, a
comma must be placed after the element, but
within the parentheses.
n For example, (17,) is a one-element tuple.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 15

The str Class
q String literals can be enclosed in single

quotes, as in ‘hello’, or double quotes,
as in "hello".

q A string can also begin and end with
three single or double quotes, if it
contains newlines in it.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 16

The set Class
q Python’s set class represents a set, namely a collection

of elements, without duplicates, and without an inherent
order to those elements.

q Only instances of immutable types can be added to a
Python set. Therefore, objects such as integers, floating-
point numbers, and character strings are eligible to be
elements of a set.
n The frozenset class is an immutable form of the set type, itself.

q Python uses curly braces { and } as delimiters for a set
n For example, as {17} or {‘red’, ‘green’, ‘blue’}
n The exception to this rule is that { } does not represent an

empty set. Instead, the constructor set() returns an empty set.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 17

The dict Class
q Python’s dict class represents a dictionary, or mapping,

from a set of distinct keys to associated values.
q Python implements a dict using an almost identical

approach to that of a set, but with storage of the
associated values.
n The literal form { } produces an empty dictionary.

q A nonempty dictionary is expressed using a comma-
separated series of key:value pairs. For example, the
dictionary {‘ga’ : ‘Irish’, ‘de’ : ‘German’} maps ‘ga’ to
‘Irish’ and ‘de’ to ‘German’.

q Alternatively, the constructor accepts a sequence of
key-value pairs as a parameter, as in dict(pairs) with
pairs = [(‘ga’, ‘Irish’), (‘de’, ‘German’)].

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 18

Expressions and Operators
q Existing values can be combined into

expressions using special symbols and
keywords known as operators.

q The semantics of an operator depends
upon the type of its operands.

q For example, when a and b are
numbers, the syntax a + b indicates
addition, while if a and b are strings,
the operator + indicates concatenation.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 19

Logical Operators

q Python supports the following keyword
operators for Boolean values:

q The and and or operators short-circuit,
in that they do not evaluate the second
operand if the result can be determined
based on the value of the first operand.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 20

Equality Operators
q Python supports the following operators

to test two notions of equality:

q The expression, a is b, evaluates to
True, precisely when identifiers a and b
are aliases for the same object.

q The expression a == b tests a more
general notion of equivalence.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 21

Comparison Operators
q Data types may define a natural order

via the following operators:

q These operators have expected
behavior for numeric types, and are
defined lexicographically, and case-
sensitively, for strings.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 22

Arithmetic Operators
q Python supports the following arithmetic operators:

q For addition, subtraction, and multiplication, if both
operands have type int, then the result is an int; if one
or both operands have type float, the result is a float.

q True division is always of type float, integer division is
always int (with the result truncated)

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 23

Bitwise Operators
q Python provides the following bitwise

operators for integers:

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 24

Sequence Operators

q Each of Python’s built-in sequence types
(str, tuple, and list) support the following
operator syntaxes:

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 25

Sequence Comparisons
q Sequences define comparison operations based

on lexicographic order, performing an element
by element comparison until the first difference
is found.
n For example, [5, 6, 9] < [5, 7] because of the

entries at index 1.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 26

Operators for Sets
q Sets and frozensets support the

following operators:

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 27

Operators for Dictionaries

q The supported operators for objects of
type dict are as follows:

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 28

Operator Precedence

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 29

