N
\JV

Python Primer 1: Types and

Operators
- / >

I

© 2013 Goodrich, Tamassia, Goldwasser Python Primer

The Python Interpreter

N

a Python is an interpreted language.

o Commands are executed through the Python
interpreter.

= The interpreter receives a command, evaluates that
command, and reports the result of the command.
a A programmer defines a series of commands in
advance and saves those commands in a text file
known as source code or a script.

a For Python, source code is conventionally stored in a
file named with the .py suffix (e.g., demo.py).

© 2013 Goodrich, Tamassia, Goldwasser Python Primer

An Example Program

print('Welcome to the GPA calculator.')

print('Please enter all your letter grades, one per line.')

print('Enter a blank line to designate the end.')

map from letter grade to point value

points = {'A+':4.0, 'A':4.0, "A-":3.67, 'B+':3.33, 'B':3.0, 'B-':2.67,
'C+':2.33, 'C':2.0, 'C':1.67, 'D+':1.33, 'D':1.0, 'F':0.0}

num_courses = 0

total_points = 0

done = False

while not done:

N

grade = input() # read line from user

if grade == "'": # empty line was entered
done = True

elif grade not in points: # unrecognized grade entered
print("Unknown grade '{0}' being ignored".format(grade))

else:

num.courses += 1
total_points += points[grade]
if num_courses > O: # avoid division by zero
print('Your GPA is {0:.3}'.format(total_points / num_courses))

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 3

Objects in Python

N

a Python is an object-oriented language
and classes form the basis for all data
types.

a Python’s built-in classes:
= the int class for integers,

= the float class for floating-point values,
= the str class for character strings.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 4

» %
e T) *
T, S St bttt PR PP P L P P P P (P P P (b A

ASS|gnment Statement

a The most important of all Python commands
IS an assignment statement:

temperature = 98.6

= This command establishes temperature as an
identifier (also known as a name), and then
associates it with the object expressed on the
right-hand side of the equal sign, in this case a
floating-point object with value 98.6.

N
\J

float
08.6

temperature —— >

© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Identifiers

a Identifiers in Python are case-sensitive, so
temperature and Temperature are distinct names.

a Identifiers can be composed of almost any
combination of letters, numerals, and underscore
characters.

o An identifier cannot begin with a numeral and that

there are 33 specially reserved words that cannot be
used as identifiers:

N

Reserved Words
False as continue else from in not return vyield
None assert def except global is or try
True break del finally if lambda pass while
and class elif for import nonlocal raise with

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 6

N

IS

O
O

o A

Types

a Python is a dynamically typed language, as there

no advance declaration associating an identifier

with a particular data type.
o An identifier can be associated with any type of

vject, and it can later be reassigned to another
pject of the same (or different) type.

though an identifier has no declared type, the

o

pject to which it refers has a definite type. In our

first example, the characters 98.6 are recognized as a
floating-point literal, and thus the identifier
temperature is associated with an instance of the
float class having that value.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 7

N

Q

Objects

The process of creating a new instance of a class is known as
instantiation.

To instantiate an object we usually invoke the constructor of a
class:

w = Widget()

= This is assuming that the constructor does not require any
parameters.

If the constructor does require parameters, we might use a
syntax such as

w = Widget(a, b, ¢)

Many of Python’s built-in classes a literal form for designating
new instances. For example, the command

temperature = 98.6
results in the creation of a new instance of the float class.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer

Calling Methods

a Python supports functions a syntax such as
sorted(data), in which case data is a parameter sent
to the function.

a Python’s classes may also define one or more
methods (also known as member functions), which
are invoked on a specific instance of a class using the
dot (*."”) operator.

a For example, Python’s list class has a method named
sort that can be invoked with a syntax such as

data.sort().

= This particular method rearranges the contents of the list so
that they are sorted.

N

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 9

Built-In Classes

S
Class Description Immutable?
bool Boolean value v
int integer (arbitrary magnitude) v
float floating-point number v
list mutable sequence of objects
tuple immutable sequence of objects v
str character string v
set unordered set of distinct objects
frozenset | immutable form of set class v
dict associative mapping (aka dictionary)

a A class is immutable if each object of that
class has a fixed value upon instantiation that
cannot subsequently be changed. For
example, the float class is immutable.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 10

The bool Class

N

a The bool class is used for logical (Boolean) values,

and the only two instances of that class are
expressed as the literals:

True and False
a The default constructor, bool(), returns False.

a Python allows the creation of a Boolean value from a
nonboolean type using the syntax bool(foo) for value
foo. The interpretation depends upon the type of the
parameter.

= Numbers evaluate to False if zero, and True if nonzero.

= Sequences and other container types, such as strings and
lists, evaluate to False if empty and True if nonempty.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 11

The int Class

N

‘o The int class is designed to represent integer values with
arbitrary magnitude.
= Python automatically chooses the internal representation for an
integer based upon the magnitude of its value.
a The integer constructor, int(), returns 0 by default.

a This constructor can also construct an integer value
based upon an existing value of another type.

= For example, if f represents a floating-point value, the syntax
int(f) produces the truncated value of f. For example, int(3.14)
produces the value 3, while int(=3.9) produces the value =3.

= The constructor can also be used to parse a string that
represents an integer. For example, the expression int(137)
produces the integer value 137.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 12

The float Class

a The float class is the floating-point type in Python.

= The floating-point equivalent of an integral number, 2, can be
expressed directly as 2.0.

= One other form of literal for floating-point values uses
scientific notation. For example, the literal 6.022e23
represents the mathematical value 6.022 x 1023,

a The constructor float() returns 0.0.

a When given a parameter, the constructor, float,
returns the equivalent floating-point value.
n float(2) returns the floating-point value 2.0
n float('3.14") returns 3.14

N

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 13

N

The list Class

o A list instance stores a sequence of objects, that is, a sequence

of references (or pointers) to objects in the list.

Elements of a list may be arbitrary objects (including the None
object).

Lists are array-based sequences and a list of length n has
elements indexed from 0 to n—1 inclusive.

Lists have the ability to dynamically expand and contract their
capacities as needed.

Python uses the characters [] as delimiters for a list literal.
s []is an empty list.
n [red’, ‘green’, ‘blue’] is a list containing three string instances.

The list() constructor produces an empty list by default.

The list constructor will accept any iterable parameter.
n list(‘hello”) produces a list of individual characters, ['h’, 'e’, ', ', 0'].

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 14

The tuple Class

'a The tuple class provides an immutable
(unchangeable) version of a sequence, which
allows instances to have an internal
representation that may be more streamlined
than that of a list. Parentheses delimit a tuple.
= The empty tuple is ()

a To express a tuple of length one as a literal, a
comma must be placed after the element, but
within the parentheses.

= For example, (17,) is a one-element tuple.

N

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 15

The str Class

o String literals can be enclosed in single
quotes, as in ‘hello’, or double quotes,
as in "hello".

a A string can also begin and end with
three single or double quotes, if it
contains newlines in it.

N

print(""" Welcome to the GPA calculator.
Please enter all your letter grades, one per line.
Enter a blank line to designate the end."”")

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 16

The set Class

a Python’s set class represents a set, namely a collection
of elements, without duplicates, and without an inherent
order to those elements.

a Only instances of immutable types can be added to a
Python set. Therefore, objects such as integers, floating-
point numbers, and character strings are eligible to be
elements of a set.

s The frozenset class is an immutable form of the set type, itself.

a Python uses curly braces { and } as delimiters for a set
s For example, as {17} or {'red’, 'green’, ‘blue’}

s The exception to this rule is that { } does not represent an
empty set. Instead, the constructor set() returns an empty set.

N

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 17

The dict Class

" o Python’s dict class represents a dictionary, or mapping,
from a set of distinct keys to associated values.

a Python implements a dict using an almost identical
approach to that of a set, but with storage of the
associated values.

= The literal form { } produces an empty dictionary.

a A nonempty dictionary is expressed using a comma-
separated series of key:value pairs. For example, the
dictionary {'ga’ : ‘Irish’, 'de’ : ‘German’} maps ‘ga’ to
‘Irish” and ‘de’ to ‘German’.

a Alternatively, the constructor accepts a sequence of
key-value pairs as a parameter, as in dict(pairs) with
pairs = [(‘ga’, ‘Irish’), (‘de’, ‘German’)].

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 18

N

Expressions and Operators

o Existing values can be combined into
expressions using special symbols and
keywords known as operators.

a The semantics of an operator depends
upon the type of its operands.

a For example, when a and b are
numbers, the syntax a + b indicates
addition, while if a and b are strings,
the operator + indicates concatenation.

N

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 19

Logical Operators

N

a Python supports the following keyword
operators for Boolean values:

not unary negation
and conditional and
or conditional or

a The and and or operators short-circuit,
in that they do not evaluate the second
operand if the result can be determined
based on the value of the first operand.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 20

Equality Operators

a Python supports the following operators
to test two notions of equality:

N
\J

is same 1dentity
is not different identity
== equivalent

= not equivalent

a The expression, a is b, evaluates to
True, precisely when identifiers a and b
are aliases for the same object.

a The expression a == b tests a more
general notion of equivalence.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 21

Comparison Operators

a Data types may define a natural order
via the following operators:

N

< less than

<= less than or equal to
> greater than
>= greater than or equal to

a These operators have expected
behavior for numeric types, and are
defined lexicographically, and case-
sensitively, for strings.

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 22

N

.I

*

/

//
%

Arithmetic Operators

a Python supports the following arithmetic operators:

addition

subtraction
multiplication

true division

integer division

the modulo operator

a For addition, subtraction, and multiplication, if both
operands have type int, then the result is an int; if one
or both operands have type float, the result is a float.

a True division is always of type float, integer division is
always int (with the result truncated)

© 2013 Goodrich, Tamassia, Goldwasser

Python Primer 23

Bitwise Operators

N

a Python provides the following bitwise
operators for integers:

~ bitwise complement (prefix unary operator)
& bitwise and
|

bitwise or

bitwise exclusive-or
<< shift bits left, filling in with zeros
>> shift bits right, filling in with sign bit

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 24

Sequence Operators

N

a Each of Python’s built-in sequence types
(str, tuple, and list) support the following
operator syntaxes:

s[j] element at index j
s[start:stop] slice including indices [start,stop)
s[start:stop:step] slice including indices start, start + step,
start + 2xstep, ..., up to but not equalling or stop

s+t concatenation of sequences
k xs shorthand fors + s + s + ... (k times)
val ins containment check
val not in s non-containment check

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 25

Sequence Comparisons

a Sequences define comparison operations based
on lexicographic order, performing an element

by element comparison until the first difference
is found.

= For example, [5, 6, 9] < [5, 7] because of the
entries at index 1.

N

s ==t equivalent (element by element)
s l=1t not equivalent
s <t lexicographically less than
s <=1t lexicographically less than or equal to
s >t lexicographically greater than
s >=1t lexicographically greater than or equal to
© 2013 Goodrich, Tamassia, Goldwasser Python Primer 26

Operators for Sets

" o Sets and frozensets support the
following operators:

N

key in s containment check
key not in s non-containment check
sl ==s2 sl is equivalent to s2

sl I=s2 sl 1s not equivalent to s2
sl <=s2 slissubset of s2

sl < s2 sl is proper subset of s2
sl >=s2 sl issuperset of s2

sl > s2 sl 1s proper superset of s2

sl | s2 the union of s1 and s2

sl & s2 the intersection of s1 and s2

sl — s2 the set of elements in s1 but not s2

sl " s2 the set of elements 1n precisely one of sl or s2

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 27

Operators for Dictionaries

N

a The supported operators for objects of
type dict are as follows:

d[key] value associated with given key
d[key] = value set (or reset) the value associated with given key
del d[key] remove key and 1ts associated value from dictionary
key in d containment check

key not ind non-containment check
dl == d2 d1 1s equivalent to d2
dl = d2 d1 is not equivalent to d2

© 2013 Goodrich, Tamassia, Goldwasser Python Primer 28

Operator Precedence

Operator Precedence

o

expr.member

Symbols
expr(...)

expr|...]
Kok

“expr

—expr,

+expr,

x [, /], %

<<, >>

==, =, <, <=, >, >=

not in
not expr
and
or

Is, IS not,

in,

vall if cond else val2

=, +=, —=, *x=, elcC.

member access

container subscripts/slices

function/method calls
exponentiation

unary operators

addition, subtraction

comparisons
containment

logical-not

logical-and
logical-or

conditional

assignments

1
2
3
4

5 | multiplication, division

6

7 | bitwise shifting
8 | bitwise-and

9 | bitwise-xor
10 | bitwise-or

11

12
13
14
15
16

\V

29

Python Primer

© 2013 Goodrich, Tamassia, Goldwasser

