Recursion

The Recursion Pattern

- Recursion: when a method calls itself
- Classic example--the factorial function:
- n ! $=1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n$
- Recursive definition:

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
n \cdot f(n-1) & \text { else }
\end{array}\right.
$$

- As a Python method:

1 def factorial(n):
2 if $\mathrm{n}==0$:
3 return 1
4 else:
5 return $\mathrm{n} *$ factorial($\mathrm{n}-1$)

Content of a Recursive Method

- Base case(s)
- Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
- Every possible chain of recursive calls must eventually reach a base case.
- Recursive calls
- Calls to the current method.
- Each recursive call should be defined so that it makes progress towards a base case.

Visualizing Recursion

- Recursion trace

- Example
- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value

Example: English Ruler

- Print the ticks and numbers like an English ruler:

Using Recursion

drawTicks(length)
Input: length of a 'tick’
Output: ruler with tick of the given length in the middle and smaller rulers on either side

Recursive Drawing Method

- The drawing method is based on the following recursive definition
- An interval with a central tick length $L \geq 1$ consists of:
- An interval with a central tick length L-1
- An single tick of length L
- An interval with a central tick length L-1

A Recursive Method for Drawing Ticks on an English Ruler

```
def draw_line(tick_length, tick_label=' ''):
    """Draw one line with given tick length (followed by optional label)."""
    line = ' -' * tick_length
    if tick_label:
        line += ' ' + tick_label
    print(line)
def draw_interval(center_length):
    """Draw tick interval based upon a central tick length.
    if center_length > 0: # stop when length drops to 0
        draw_interval(center_length - 1) # recursively draw top ticks
        draw_line(center_length) # draw center tick
        draw_interval(center_length - 1) # recursively draw bottom ticks
def draw_ruler(num_inches, major_length):
    """Draw English ruler with given number of inches, major tick length."""
    draw_line(major_length, '0') # draw inch 0 line
    for j in range(1, 1 + num_inches):
        draw_interval(major_length - 1) # draw interior ticks for inch
        draw_line(major_length, str(j)) # draw inch j line and label

\section*{Binary Search}

\section*{- Search for an integer, target, in an ordered list.}
```

def binary_search(data, target, low, high):
"""Return True if target is found in indicated portion of a Python list.
The search only considers the portion from data[low] to data[high] inclusive.
""
if low > high:
return False \# interval is empty; no match
else:
mid $=($ low + high $) / / 2$
if target $==$ data[mid]: \# found a match
return True
elif target < data[mid]:
\# recur on the portion left of the middle
return binary_search(data, target, low, mid - 1)
else:
\# recur on the portion right of the middle
return binary_search(data, target, mid +1 , high)

```

\section*{Visualizing Binary Search}
- We consider three cases:
- If the target equals data[mid], then we have found the target.
- If target < data[mid], then we recur on the first half of the sequence.
- If target > data[mid], then we recur on the second half of the sequence.


\section*{Analyzing Binary Search}
- Runs in \(\mathrm{O}(\log \mathrm{n})\) time.
- The remaining portion of the list is of size high - low + 1 .
- After one comparison, this becomes one of the following:
\[
\begin{gathered}
(\text { mid }-1)-\text { low }+1=\left\lfloor\frac{\text { low }+ \text { high }}{2}\right\rfloor-\text { low } \leq \frac{\text { high }- \text { low }+1}{2} \\
\text { high }-(\text { mid }+1)+1=\text { high }-\left\lfloor\frac{\text { low }+ \text { high }}{2}\right\rfloor \leq \frac{\text { high }- \text { low }+1}{2} .
\end{gathered}
\]
- Thus, each recursive call divides the search region in half; hence, there can be at most \(\log n\) levels.

\section*{Linear Recursion}
- Test for base cases
- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.
- Recur once
- Perform a single recursive call
- This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
- Define each possible recursive call so that it makes progress towards a base case.

\section*{Example of Linear Recursion}

Algorithm LinearSum \((A, n)\) :
Example recursion trace:

\section*{Input:}

A integer array \(A\) and an integer \(n=1\), such that \(A\) has at least \(n\) elements

\section*{Output:}

The sum of the first \(n\) integers in \(A\)
if \(n=1\) then
return \(A[0]\)
else
return LinearSum \((A, n-1)+\)


\section*{Reversing an Array}

Algorithm ReverseArray (A, i, j):
Input: An array \(A\) and nonnegative integer indices \(i\) and \(j\)
Output: The reversal of the elements in \(A\) starting at index \(i\) and ending at \(j\)
if \(i<j\) then
Swap \(A[i]\) and \(A[j]\)
ReverseArray \((A, i+1, j-1)\)
return

\section*{Defining Arguments for Recursion}
- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional paramaters that are passed to the method.
- For example, we defined the array reversal method as ReverseArray \((A, i, j)\), not ReverseArray \((A)\).
- Python version:
```

def reverse(S, start, stop):
"""Reverse elements in implicit slice S[start:stop]."""
if start < stop - 1:
\# if at least 2 elements:
S[start], S[stop-1] = S[stop-1], S[start] \# swap first and last
reverse(S, start+1, stop-1) \# recur on rest

```

\section*{Computing Powers}
- The power function, \(p(x, n)=x^{n}\), can be defined recursively:
\[
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
x \cdot p(x, n-1) & \text { else }
\end{array}\right.
\]
- This leads to an power function that runs in \(\mathrm{O}(\mathrm{n})\) time (for we make n recursive calls).
- We can do better than this, however.

\section*{Recursive Squaring}
- We can derive a more efficient linearly recursive algorithm by using repeated squaring:
\[
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } x=0 \\
x \cdot p(x,(n-1) / 2)^{2} & \text { if } x>0 \text { is odd } \\
p(x, n / 2)^{2} & \text { if } x>0 \text { is even }
\end{array}\right.
\]
- For example,
\[
\begin{aligned}
& 2^{4}=2^{(4 / 212}=\left(2^{4 / 2}\right)^{2}=\left(2^{2}\right)^{2}=4^{2}=16 \\
& 2^{5}=2^{1+(4 / 2) 2}=2\left(2^{4 / 2}\right)^{2}=2\left(2^{2}\right)^{2}=2\left(4^{2}\right)=32 \\
& 2^{6}=2^{(6 / 2) 2}=\left(2^{6 / 2}\right)^{2}=\left(2^{3}\right)^{2}=8^{2}=64 \\
& 2^{7}=2^{1+(6 / 2))^{2}}=2\left(2^{6 / 2}\right)^{2}=2\left(2^{3}\right)^{2}=2\left(8^{2}\right)=128 .
\end{aligned}
\]

\section*{Recursive Squaring Method}

Algorithm \(\operatorname{Power}(x, n)\) :
Input: A number \(x\) and integer \(n=0\)
Output: The value \(x{ }^{n}\)
if \(n=0\) then
return 1
if \(n\) is odd then
\(y=\operatorname{Power}(x,(n-1) / 2)\)
return \(x \cdot y^{\prime} y\)
else
\(y=\operatorname{Power}(x, n / 2)\)
return \(y^{\prime} y\)

\section*{Analysis}

Algorithm \(\operatorname{Power}(x, n)\) :
Input: A number \(x\) and integer \(n=0\)
Output: The value \(x^{n}\) if \(n=0\) then return 1 if \(n\) is odd then
\[
y=\operatorname{Power}(x, n / 2)
\]
return \(y\) ' \(y\)

Each time we make a recursive call we halve the value of \(n\); hence, we make \(\log n\) recursive calls. That is, this method runs in \(O(\log n)\) time.

It is important that we use a variable twice here rather than calling the method twice.

\section*{Tail Recursion}
- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to nonrecursive methods (which saves on some resources).
- Example:

Algorithm IterativeReverseArray \((A, i, j)\) :
Input: An array \(A\) and nonnegative integer indices \(i\) and \(j\)
Output: The reversal of the elements in \(A\) starting at index \(/\) and ending at \(j\)
while \(i<j\) do
Swap \(A[i]\) and \(A[j]\)
\(i=i+1\)
\(j=j-1\)
return

\section*{Binary Recursion}
- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example from before: the DrawTicks method for drawing ticks on an English ruler.


\section*{Another Binary Recusive Method}
- Problem: add all the numbers in an integer array A:

Algorithm BinarySum ( \(A\), \(i, n\) ):
Input: An array \(A\) and integers \(i\) and \(n\)
Output: The sum of the \(n\) integers in \(A\) starting at index \(i\)
if \(n=1\) then
return \(A[i]\)
return BinarySum \((A, i, n / 2)+\operatorname{BinarySum}(A, i+n / 2, n / 2)\)
- Example trace:


\section*{Computing Fibonacci Numbers}
- Fibonacci numbers are defined recursively:
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2} \quad \text { for } i>1 .
\end{aligned}
\]
- Recursive algorithm (first attempt):

Algorithm BinaryFib(k):
Input: Nonnegative integer \(k\)
Output: The \(k\) th Fibonacci number \(F_{k}\)
if \(k=1\) then
return \(k\)
else
return \(\operatorname{BinaryFib}(k-1)+\operatorname{BinaryFib}(k-2)\)

\section*{Analysis}
- Let \(n_{k}\) be the number of recursive calls by BinaryFib(k)
- \(n_{0}=1\)
- \(n_{1}=1\)
- \(n_{2}=n_{1}+n_{0}+1=1+1+1=3\)
- \(n_{3}=n_{2}+n_{1}+1=3+1+1=5\)
- \(n_{4}=n_{3}+n_{2}+1=5+3+1=9\)
- \(n_{5}=n_{4}+n_{3}+1=9+5+1=15\)
- \(n_{6}=n_{5}+n_{4}+1=15+9+1=25\)
- \(n_{7}=n_{6}+n_{5}+1=25+15+1=41\)
- \(n_{8}=n_{7}+n_{6}+1=41+25+1=67\).
- Note that \(n_{k}\) at least doubles every other time
- That is, \(n_{k}>2^{k / 2}\). It is exponential!

\section*{A Better Fibonacci Algorithm}
- Use linear recursion instead

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k Output: Pair of Fibonacci numbers ( \(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{k}-1}\) ) if \(k=1\) then return (k, 0) else
( \(\mathrm{i}, \mathrm{j}\) ) \(=\) LinearFibonacci \((k-1)\) return ( \(\mathrm{i}+\mathrm{j}, \mathrm{i}\) )
- LinearFibonacci makes k -1 recursive calls

\section*{Multiple Recursion}
- Motivating example:
- summation puzzles
- pot + pan = bib
- \(d o g+c a t=p i g\)
-boy + girl = baby
- Multiple recursion:
- makes potentially many recursive calls
- not just one or two

\section*{Algorithm for Multiple Recursion}

Algorithm PuzzleSolve(k,S,U):
Input: Integer k, sequence S, and set U (universe of elements to test)
Output: Enumeration of all k-length extensions to \(S\) using elements in \(U\) without repetitions
for alle in \(U\) do
Remove e from \(U \quad\{e\) is now being used \(\}\)
Add e to the end of \(S\)
if \(k=1\) then
Test whether \(S\) is a configuration that solves the puzzle if \(S\) solves the puzzle then
return "Solution found: " S
else
PuzzleSolve(k - 1, S,U)
Add e back to \(U \quad\{e\) is now unused \(\}\)
Remove e from the end of \(S\)

\section*{Example}
\(\mathrm{cbb}+\mathrm{ba}=\mathrm{abc}\)
\(799+98=997\)
a,b,c stand for 7,8,9; not necessarily in that order


\section*{Visualizing PuzzleSolve}
```

