Analysis of Algorithms

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:

```
from time import time
start_time = time( )
run algorithm
end_time = time( )
elapsed = end_time - start_time
```

Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
Output ...
```

- Method call
 - method (arg [, arg...])
- Return value return expression
- Expressions:
 - ← Assignment
 - = Equality testing
 - n² Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

A CPU

character

Memory cells are numbered and accessing any cell in memory takes unit time.

Seven Important Functions

- Seven functions that
 often appear in algorithm 1E+30
 analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N \approx *n* log *n*
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
def find_max(data):
"""Return the maximum element from a nonempty Python list."""
biggest = data[0]  # The initial value to beat
for val in data:  # For each value:
if val > biggest  # if it is greater than the best so far,
biggest = val  # we have found a new best (so far)
return biggest  # When loop ends, biggest is the max
```

Step 1: 2 ops, 3: 2 ops, 4: 2n ops, 5: 2n ops, 6: 0 to n ops, 7: 1 op

Estimating Running Time

- □ Algorithm find_max executes 5n + 5 primitive operations in the worst case, 4n + 5 in the best case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- □ Let T(n) be worst-case time of find_max. Then $a(4n + 5) \le T(n) \le b(5n + 5)$
- \Box Hence, the running time T(n) is bounded by two linear functions.

Growth Rate of Running Time

- Changing the hardware/ software environment
 - lacktriangle Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- \Box The linear growth rate of the running time T(n) is an intrinsic property of algorithm find max

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n ²	~ c n ² + 2c n	4c n ²	16c n ²
c n ³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples → when problem size doubles

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is n² / 4

merge sort is 2 n lg n

sort a million items?

insertion sort takes roughly 70 hours

while

merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- □ Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Example

■ Example: the function n^2 is not O(n)

$$n^2 \le cn$$

- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

♦ 7n-2

7n-2 is O(n)

need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$

 $-3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$

■ 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n)$ need c > 0 and $n_0 \ge 1$ such that 3 log n + 5 \le c•log n for n $\ge n_0$ this is true for c = 8 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We say that algorithm $find_{max}$ "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- □ The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

```
def prefix_average1(S):

"""Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""

n = len(S)

A = [0] * n

for j in range(n):

total = 0

for i in range(j + 1):

total + S[i]

A[j] = total / (j+1)

# record the average

return A
```

Arithmetic Progression

- □ The running time of *prefixAverage1* isO(1 + 2 + ...+ n)
- □ The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm
 prefixAverage1 runs in
 O(n²) time

Prefix Averages 2 (Looks Better)

The following algorithm uses an internal Python function to simplify the code

 \clubsuit Algorithm *prefixAverage2* still runs in $O(n^2)$ time!

Prefix Averages 3 (Linear Time)

The following algorithm computes prefix averages in linear time by keeping a running sum

```
def prefix_average3(S):

"""Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""

n = len(S)

A = [0] * n

total = 0

total + S[j]

A[j] = total / (j+1)

# create new list of n zeros

# compute prefix sum as S[0] + S[1] + ...

# update prefix sum to include S[j]

# update prefix sum to include S[j]

# compute average based on current sum

# compute average based on current sum
```

 \bullet Algorithm *prefixAverage3* runs in O(n) time

Math you need to Review

- Summations
- Logarithms and Exponents

Basic probability

properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

 $log_b(x/y) = log_bx - log_by$
 $log_bxa = alog_bx$
 $log_ba = log_xa/log_xb$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = (a^b)^c$$

$$a^b / a^c = a^{(b-c)}$$

$$b = a^{\log_a b}$$

$$b^c = a^{c*\log_a b}$$

Relatives of Big-Oh

big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n₀ ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n₀

big-Theta

f(n) is ⊕(g(n)) if there are constants c' > 0 and c"
 > 0 and an integer constant n₀ ≥ 1 such that c'•g(n) ≤ f(n) ≤ c"•g(n) for n ≥ n₀

Intuition for Asymptotic Notation

Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically
 less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)

big-Theta

• f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)

Example Uses of the Relatives of Big-Oh

\blacksquare 5 n^2 is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$ let c = 5 and $n_0 = 1$

\blacksquare 5 n^2 is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$ let c = 1 and $n_0 = 1$

■ $5n^2$ is $\Theta(n^2)$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Let
$$c = 5$$
 and $n_0 = 1$