Analysis of Algorithms

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze

- Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:

```
from time import time
start_time = time( )
run algorithm
end_time = time( )
elapsed = end_time - start_time
```

- Plot the results

Limitations of Experiments

a It is necessary to implement the algorithm, which may be difficult

- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
ם Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...]) Input ...
Output ...

- Method call
method (arg [, arg...])
- Return value return expression
- Expressions:
\leftarrow Assignment
$=$ Equality testing
n^{2} Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

- A CPU

- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.

Seven Important Functions

- Seven functions that often appear in algorithm $1 \mathrm{E}+30$ analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- $\mathrm{N}-\log -\mathrm{N} \approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx 2^{n}$
- In a log-log chart, the slope of the line corresponds to the growth rate

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

$$
g(n)=n \lg n
$$

$$
g(n)=2^{n}
$$

Analysis of Algorithms

Primitive Operations

- Basic computations performed by an algorithm
a Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size
def find_max(data):
2 """Return the maximum element from a nonempty Python list."" "
3 biggest $=$ data[0] \# The initial value to beat
4 for val in data:
5 if val > biggest
$6 \quad$ biggest $=$ val
7 return biggest
\# For each value:
\# if it is greater than the best so far,
\# we have found a new best (so far)
\# When loop ends, biggest is the max
- Step 1: 2 ops, 3: 2 ops, 4: 2n ops, 5: $2 n$ ops, 6: 0 to n ops, 7: 1 op

Estimating Running Time

- Algorithm find_max executes $5 \boldsymbol{n}+5$ primitive operations in the worst case, $4 \boldsymbol{n}+5$ in the best case. Define:
$a=$ Time taken by the fastest primitive operation $b=$ Time taken by the slowest primitive operation
a Let $\boldsymbol{T}(n)$ be worst-case time of find_max. Then

$$
a(4 n+5) \leq \boldsymbol{T}(n) \leq b(5 n+5)
$$

- Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions.

Growth Rate of Running Time

- Changing the hardware/ software environment
- Affects $T(n)$ by a constant factor, but
- Does not alter the growth rate of $T(n)$
- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm find_max

Why Growth Rate Matters

if runtime is...	time for $\mathrm{n}+1$	time for 2 n	time for 4 n	runtime quadruples when problem size doubles
$c \lg n$	$c \lg (\mathrm{n}+1)$	$c(\lg \mathrm{n}+1)$	$c(\lg \mathrm{n}+2)$	
c n	$\mathrm{c}(\mathrm{n}+1)$	2cn	4 cn	
c $n \lg \mathrm{n}$	$\begin{aligned} & \sim c n \lg n \\ &+c n \end{aligned}$	$\begin{gathered} \text { 2c } n \lg n+ \\ 2 \mathrm{cn} \end{gathered}$	$\underset{4 \mathrm{cn}}{4 \mathrm{c} \lg \mathrm{n}+}$	
$\mathrm{cn}{ }^{2}$	$\sim \mathrm{c} \mathrm{n}^{2}+2 \mathrm{c} n$	$4 \mathrm{c} \mathrm{n}^{2}$	$16 \mathrm{c} \mathrm{n}^{2}$	
$\mathrm{c} \mathrm{n}^{3}$	$\sim c n^{3}+3 \mathrm{c} n^{2}$	$8 \mathrm{c} \mathrm{n}^{3}$	$64 \mathrm{c} \mathrm{n}^{3}$	
c 2^{n}	c 2^{n+1}	c $2^{2 n}$	c $2^{4 n}$	
Goodrich, Tamassia, Goldwasser Analysis of Algorithms				

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is $n^{2} / 4$
merge sort is
$2 n \lg n$
sort a million items?
insertion sort takes roughly 70 hours
while
merge sort takes roughly 40 seconds

This is a slow machine, but if $100 x$ as fast then it's 40 minutes versus less than 0.5 seconds

Constant Factors

- The growth rate is
not affected by
- constant factors or
- lower-order terms
- Examples
- $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
- $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

Big-Oh Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if there are positive constants c and n_{0} such that $f(n) \leq c g(n)$ for $n \geq n_{0}$
- Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq c n$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$

- Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{0}=10$

Big-Oh Example

- Example: the function \boldsymbol{n}^{2} is not $\boldsymbol{O}(\boldsymbol{n})$
- $n^{2} \leq c n$
- $\boldsymbol{n} \leq \boldsymbol{c}$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

-7n-2
$7 \mathrm{n}-2$ is $\mathrm{O}(\mathrm{n})$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \bullet n$ for $n \geq n_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$

- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $3 \mathrm{n}^{3}+20 \mathrm{n}^{2}+5 \leq \mathrm{c} \mathrm{n}^{3}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+5$
$3 \log n+5$ is $O(\log n)$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $3 \log \mathrm{n}+5 \leq \mathrm{c} \bullet \log \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $f(n)$ is no more than the growth rate of $g(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$f(\boldsymbol{n})$ grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree \boldsymbol{d}, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
a Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We say that algorithm find_max "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first $(i+1)$ elements of X :

$$
A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)
$$

- Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

```
def prefix_average1(S):
    """Return list such that, for all j, A[j] equals average of S[0], .., S[j]."""
    n}=\operatorname{len(S)
    A = [0]* n # create new list of n zeros
    for j in range(n):
        total = 0
        for i in range(j + 1):
            total +=S[i]
        A[j] = total / (j+1)
    return A
```


Arithmetic Progression

- The running time of prefixAverage1 is

$$
\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})
$$

- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAveragel runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages 2 (Looks Better)

- The following algorithm uses an internal Python function to simplify the code

```
def prefix_average2(S):
    """Return list such that, for all j, A[j] equals average of S[0], ..., S[j].
    n}=len(S
    A = [0] * n # create new list of n zeros
    for j in range(n):
        A[j] = sum(S[0:j+1]) / (j+1) # record the average
    return A
```

- Algorithm prefixAverage2 still runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time!

Prefix Averages 3 (Linear Time)

- The following algorithm computes prefix averages in linear time by keeping a running sum

```
def prefix_average3(S):
    "" "Return list such that, for all \(\mathrm{j}, \mathrm{A}[\mathrm{j}]\) equals average of \(\mathrm{S}[0], \ldots, \mathrm{S}[\mathrm{j}]\).
    \(\mathrm{n}=\operatorname{len}(\mathrm{S})\)
    \(\mathrm{A}=[0] * \mathrm{n} \quad \#\) create new list of n zeros
    total \(=0 \quad \#\) compute prefix sum as \(\mathrm{S}[0]+\mathrm{S}[1]+\ldots\)
    for j in range( n ):
        total \(+=S[j] \quad\) \# update prefix sum to include \(\mathrm{S}[\mathrm{j}]\)
        \(\mathrm{A}[\mathrm{j}]=\) total \(/(\mathrm{j}+1) \quad\) \# compute average based on current sum
    return A
```

- Algorithm prefixAverage3 runs in $\boldsymbol{O}(n)$ time

Math you need to Review

- Summations
- Logarithms and Exponents

- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x a=a \log _{b} x \\
& \log _{b} a=\log _{x} a / \log _{x} b
\end{aligned}
$$

- properties of exponentials:

$$
\begin{aligned}
& a^{(b+c)}=a^{b} a^{c} \\
& a^{b c}=\left(a^{b}\right)^{c} \\
& a^{b} / a^{c}=a^{(b-c)} \\
& b=a \log _{a} b \\
& b^{c}=a^{c} \log _{a} b
\end{aligned}
$$

Relatives of Big-Oh

- big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
- big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}$ >0 and an integer constant $\mathrm{n}_{0} \geq 1$ such that $c^{\prime} \cdot g(n) \leq f(n) \leq c^{\prime \prime} \bullet g(n)$ for $n \geq n_{0}$

Intuition for Asymptotic Notation

Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Example Uses of the Relatives of Big-Oh

- $5 n^{2}$ is $\Omega\left(n^{2}\right)$

$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
let $c=5$ and $n_{0}=1$
- $\mathbf{5} \boldsymbol{n}^{\mathbf{2}}$ is $\Omega(\boldsymbol{n})$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
let $c=1$ and $n_{0}=1$
- $\boldsymbol{5 n}^{\mathbf{2}}$ is $\Theta\left(\boldsymbol{n}^{\mathbf{2}}\right)$
$f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \leq \operatorname{c} \cdot g(n)$ for $n \geq n_{0}$
Let $c=5$ and $n_{0}=1$

