
SQL Queries

� Principal form:

SELECT desired attributes
FROM tuple variables |

range over relations
WHERE condition about t.v.'s;

Running example relation schema:

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

1



Example

What beers are made by Anheuser-Busch?

Beers(name, manf)

SELECT name

FROM Beers

WHERE manf = 'Anheuser-Busch';

� Note single quotes for strings.

name

Bud
Bud Lite
Michelob

2



Formal Semantics of Single-Relation SQL

Query

1. Start with the relation in the FROM clause.

2. Apply �, using condition in WHERE clause.

3. Apply � using attributes in SELECT clause.

Equivalent Operational Semantics

Imagine a tuple variable ranging over all tuples of
the relation. For each tuple:

� Check if it satis�es the WHERE clause.

� Print the attributes in SELECT, if so.

3



Star as List of All Attributes

Beers(name, manf)

SELECT *

FROM Beers

WHERE manf = 'Anheuser-Busch';

name manf

Bud Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

4



Renaming columns

Beers(name, manf)

SELECT name AS beer

FROM Beers

WHERE manf = 'Anheuser-Busch';

beer

Bud
Bud Lite
Michelob

5



Expressions as Values in Columns

Sells(bar, beer, price)

SELECT bar, beer,

price*106 AS priceInYen

FROM Sells;

bar beer priceInYen

Joe's Bud 265
Sue's Miller 318
� � � � � � � � �

� Note no WHERE clause OK.

6



� Trick: If you want an answer with a particular
string in each row, use that constant as an
expression.

Likes(drinker, beer)

SELECT drinker,

'likes Bud' AS whoLikesBud

FROM Likes

WHERE beer = 'Bud';

drinker whoLikesBud

Sally likes Bud
Fred likes Bud
� � � � � �

7



Example

Find the price Joe's Bar charges for Bud.

Sells(bar, beer, price)

SELECT price

FROM Sells

WHERE bar = 'Joe''s Bar' AND

beer = 'Bud';

� Note: two single-quotes in a character string
represent one single quote.

� Conditions in WHERE clause can use logical
operators AND, OR, NOT and parentheses in the
usual way.

� Remember: SQL is case insensitive. Keywords
like SELECT or AND can be written upper/lower
case as you like.

✦ Only inside quoted strings does case
matter.

8



Patterns

� % stands for any string.

� stands for any one character.

� \Attribute LIKE pattern" is a condition that
is true if the string value of the attribute
matches the pattern.

✦ Also NOT LIKE for negation.

Example

Find drinkers whose phone has exchange 555.

Drinkers(name, addr, phone)

SELECT name

FROM Drinkers

WHERE phone LIKE '%555- ';

� Note patterns must be quoted, like strings.

9



Multirelation Queries

� List of relations in FROM clause.

� Relation-dot-attribute disambiguates
attributes from several relations.

Example

Find the beers that the frequenters of Joe's Bar
like.

Likes(drinker, beer)

Frequents(drinker, bar)

SELECT beer

FROM Frequents, Likes

WHERE bar = 'Joe''s Bar' AND

Frequents.drinker = Likes.drinker;

10



Formal Semantics of Multirelation Queries

Same as for single relation, but start with the
product of all the relations mentioned in the FROM
clause.

Operational Semantics

Consider a tuple variable for each relation in the
FROM.

� Imagine these tuple variables each pointing to
a tuple of their relation, in all combinations
(e.g., nested loops).

� If the current assignment of tuple-variables to
tuples makes the WHERE true, then output the
attributes of the SELECT.

11



bar

Frequents

drinker beerdrinker

Likes

f
lSally

Sally
Joe's

12



Explicit Tuple Variables

Sometimes we need to refer to two or more copies
of a relation.

� Use tuple variables as aliases of the relations.

Example

Find pairs of beers by the same manufacturer.

Beers(name, manf)

SELECT b1.name, b2.name

FROM Beers b1, Beers b2

WHERE b1.manf = b2.manf AND

b1.name < b2.name;

� SQL2 permits AS between relation and its
tuple variable; Oracle 8 does not.

� Note that b1.name < b2.name is needed to
avoid producing (Bud, Bud) and to avoid
producing a pair in both orders.

13



Subqueries

Result of a select-from-where query can be used in
the where-clause of another query.

Simplest Case: Subquery Returns a Single,

Unary Tuple

Find bars that serve Miller at the same price Joe
charges for Bud.

Sells(bar, beer, price)

SELECT bar

FROM Sells

WHERE beer = 'Miller' AND

price =

(SELECT price

FROM Sells

WHERE bar = 'Joe''s Bar' AND

beer = 'Bud'

);

� Notice the scoping rule: an attribute refers
to the most closely nested relation with that
attribute.

� Parentheses around subquery are essential.

14



The IN Operator

\Tuple IN relation" is true i� the tuple is in the
relation.

Example

Find the name and manufacturer of beers that
Fred likes.

Beers(name, manf)

Likes(drinker, beer)

SELECT *

FROM Beers

WHERE name IN

(SELECT beer

FROM Likes

WHERE drinker = 'Fred'

);

� Also: NOT IN.

15



EXISTS

\EXISTS(relation)" is true i� the relation is
nonempty.

Example

Find the beers that are the unique beer by their
manufacturer.

Beers(name, manf)

SELECT name

FROM Beers b1

WHERE NOT EXISTS(

SELECT *

FROM Beers

WHERE manf = b1.manf AND

name <> b1.name

);

� Note scoping rule: to refer to outer Beers in
the inner subquery, we need to give the outer
a tuple variable, b1 in this example.

� A subquery that refers to values from a
surrounding query is called a correlated

subquery.

16



Quanti�ers

ANY and ALL behave as existential and universal
quanti�ers, respectively.

� Beware: in common parlance, \any" and \all"
seem to be synonyms, e.g., \I am fatter than
any of you" vs. \I am fatter than all of you."
But in SQL:

Example

Find the beer(s) sold for the highest price.

Sells(bar, beer, price)

SELECT beer

FROM Sells

WHERE price >= ALL(

SELECT price

FROM Sells

);

Class Problem

Find the beer(s) not sold for the lowest price.

17


