SQL Queries

e Principal form:

SELECT desired attributes
FROM tuple variables —

range over relations
WHERE condition about t.v.’s;

Running example relation schema:

Beers (name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Example

What beers are made by Anheuser-Busch?

Beers (name, manf)

SELECT name
FROM Beers
WHERE manf = ’Anheuser-Busch’;

e Note single quotes for strings.

name

Bud
Bud Lite
Michelob

Formal Semantics of Single-Relation SQL
Query
1. Start with the relation in the FROM clause.

2. Apply o, using condition in WHERE clause.
3. Apply 7 using attributes in SELECT clause.

Equivalent Operational Semantics

Imagine a tuple variable ranging over all tuples of
the relation. For each tuple:

e C(Check if it satisfies the WHERE clause.
e Print the attributes in SELECT, if so.

Star as List of All Attributes

Beers (name, manf)

SELECT *
FROM Beers
WHERE manf = ’Anheuser-Busch’;

name manf

Bud Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

Renaming columns

Beers (name, manf)

SELECT name AS beer
FROM Beers
WHERE manf = ’Anheuser-Busch’;

beer

Bud
Bud Lite
Michelob

Expressions as Values in Columns

Sells(bar, beer, price)

SELECT bar, beer,
price*106 AS priceInYen
FROM Sells;

bar beer priceInYen

Joe’s Bud 265
Sue’s Miller 318

e Note no WHERE clause OK.

Trick: If you want an answer with a particular
string in each row, use that constant as an

expression.

Likes(drinker, beer)

SELECT drinker,
’>1ikes Bud’ AS whoLikesBud

FROM Likes

WHERE beer = Bud’;

drinker | whoLikesBud
Sally likes Bud
Fred likes Bud

Example

Find the price Joe’s Bar charges for Bud.

Sells(bar, beer, price)

SELECT price

FROM Sells
WHERE bar = ’Joe’’s Bar’ AND
beer = ’Bud’;

e Note: two single-quotes in a character string
represent one single quote.

e Conditions in WHERE clause can use logical
operators AND, OR, NOT and parentheses in the
usual way.

e Remember: SQL is case insensitive. Keywords
like SELECT or AND can be written upper/lower
case as you like.

[Only inside quoted strings does case
matter.

Patterns

e 7 stands for any string.
e _stands for any one character.

o “Attribute LIKE pattern” is a condition that
is true it the string value of the attribute
matches the pattern.

[1 Also NOT LIKE for negation.

Example

Find drinkers whose phone has exchange 555.

Drinkers(name, addr, phone)

SELECT name
FROM Drinkers
WHERE phone LIKE ’%555-____’;

e Note patterns must be quoted, like strings.

Multirelation Queries

e List of relations in FROM clause.

e Relation-dot-attribute disambiguates
attributes from several relations.

Example

Find the beers that the frequenters of Joe’s Bar
like.

Likes(drinker, beer)
Frequents(drinker, bar)

SELECT beer

FROM Frequents, Likes

WHERE bar = ’Joe’’s Bar’ AND
Frequents.drinker = Likes.drinker;

10

Formal Semantics of Multirelation Queries

Same as for single relation, but start with the
product of all the relations mentioned in the FROM
clause.

Operational Semantics

Consider a tuple variable for each relation in the
FROM.

e Imagine these tuple variables each pointing to
a tuple of their relation, in all combinations
(e.g., nested loops).

e If the current assignment of tuple-variables to
tuples makes the WHERE true, then output the
attributes of the SELECT.

11

drinker bar
Sally | Joe’s
Frequents

12

drinker

beer

Sally

Likes

Explicit Tuple Variables

Sometimes we need to refer to two or more copies
of a relation.

e Use tuple variables as aliases of the relations.

Example

Find pairs of beers by the same manufacturer.

Beers (name, manf)

SELECT bl .name, b2.name

FROM Beers bl, Beers b2

WHERE bl .manf = b2.manf AND
bl .name < b2.name;

e SQL2 permits AS between relation and its
tuple variable; Oracle 8 does not.

e Note that bl.name < b2.name is needed to
avoid producing (Bud, Bud) and to avoid
producing a pair in both orders.

13

Subqueries

Result of a select-from-where query can be used in
the where-clause of another query.

Simplest Case: Subquery Returns a Single,
Unary Tuple

Find bars that serve Miller at the same price Joe
charges for Bud.

Sells(bar, beer, price)

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND

price =
(SELECT price
FROM Sells
WHERE bar = Joe’’s Bar’ AND
beer = ’Bud’

)

e Notice the scoping rule: an attribute refers
to the most closely nested relation with that
attribute.

e Parentheses around subquery are essential.

14

The IN Operator

“Tuple IN relation” is true iff the tuple is in the
relation.

Example

Find the name and manufacturer of beers that
Fred likes.

Beers (name, manf)
Likes(drinker, beer)

SELECT =*
FROM Beers
WHERE name IN
(SELECT beer
FROM Likes
WHERE drinker = ’Fred’

);

e Also: NOT IN.

15

EXISTS

“EXISTS(relation)” is true iff the relation is
nonempty.

Example

Find the beers that are the unique beer by their
manufacturer.

Beers (name, manf)

SELECT name
FROM Beers bl
WHERE NOT EXISTS(
SELECT =*
FROM Beers
WHERE manf = bl.manf AND
name <> bl.name

);

e Note scoping rule: to refer to outer Beers in
the inner subquery, we need to give the outer
a tuple variable, bl in this example.

e A subquery that refers to values from a
surrounding query is called a correlated
subquery.

16

Quantifiers

ANY and ALL behave as existential and universal
quantifiers, respectively.

e Beware: in common parlance, “any” and “all”
seem to be synonyms, e.g., “I am fatter than
any of you” vs. “I am fatter than all of you.”

But in SQL:

Example

Find the beer(s) sold for the highest price.

Sells(bar, beer, price)

SELECT beer

FROM Sells

WHERE price >= ALL(
SELECT price
FROM Sells

);

Class Problem
Find the beer(s) not sold for the lowest price.

17

