Inferring FD’s

And this is important because . . .

e When we talk about improving relational
designs, we often need to ask “does this FD
hold in this relation?”

Given FD’s X1 — Al, X2 — A2---Xn — An,
does FD Y — B necessarily hold in the same
relation?

e Start by assuming two tuples agree in Y. Use
given FD’s to infer other attributes on which
they must agree. If B is among them, then
yes, else no.

Algorithm

Define YT = closure of Y = set of attributes
functionally determined by Y:

e Basis: YT =Y.

e Induction: If X C YT, and X — Ais a given
FD, then add A to Y.

e End when Y cannot be changed.

Example

A— B, BC — D.

o At =AB.

o (CT=0C.

e (AC)T = ABCD.

Given Versus Implied FD’s

Typically, we state a few FD’s that are known to
hold for a relation R.

e Other FD’s may follow logically from the
given FD’s; these are implied FD’s.

e We are free to choose any basis for the FD’s
of R — a set of FD’s that imply all the FD’s
that hold for R.

Finding All Implied FD’s

Motivation: Suppose we have a relation ABC'D

with some FD’s F'. If we decide to decompose
ABCD into ABC and AD, what are the FD’s for
ABC, AD?

e Example: FF =AB —- C,C — D, D — A.
It looks like just AB — C' holds in ABC, but

in fact C' — A follows from F' and applies to
relation ABC.

e Problem is exponential in worst case.

Algorithm

For each set of attributes X compute X .

Add X — A for each Ain X+ — X.

Ignore or drop some “obvious” dependencies
that follow from others:

Trivial FD’s: right side is a subset of left side.

[0 Consequence: no point in computing 0+
or closure of full set of attributes.

Drop XY — A it X — A holds.

[0 Consequence: If X is all attributes, then
there is no point in computing closure of
supersets of X.

Ignore FD’s whose right sides are not single
attributes.

Notice that after we project the discovered
FD’s onto some relation, the FD’s eliminated
by rules 1, 2, and 3 can be inferred in the
projected relation.

Example

Example: F = AB —- C,C — D, D — A. What
FD’s follow?

At = A; BT = B (nothing).
Ot = ACD (add C — A).
DT = AD (nothing new).

(AB)" = ABCD (add AB — D; skip all
supersets of AB).

(BC)T™ = ABCD (nothing new; skip all
supersets of BC').

(BD)tY = ABCD (add BD — C; skip all
supersets of BD).

(AC)t = ACD; (AD)T = AD; (CD)* =
ACD (nothing new).

(ACD)* = ACD (nothing new).

All other sets contain AB, BC, or BD, so
skip.

Thus, the only interesting FD’s that follow
from F are: C — A, AB— D, BD — C.

Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD’s follow from the fact “key — everything.”

e Formally, R is in BCNF if every nontrivial FD
for R, say X — A, has X a superkey.

(1 “Nontrivial” = right-side attribute not in
left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.

Example of Problems

Drinkers(name, addr, beerslLiked, manf,

favoriteBeer)

name |addr beersLiked |mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway | 777 WickedAle |Pete’s| 777

Spock |Enterprise|Bud 7?7 |Bud

FD’s:

1. name — addr

2. name — favoriteBeer

3. DbeersLiked — manf

?77’s are redundant, since we can figure them
out from the FD’s.

Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of

her tuples?

Deletion anomalies: If nobody likes Bud, we
lose track of Bud’s manufacturer.

Each of the given FD’s is a BCNF violation:
e Key = {name, beersLiked}

[1 Each of the given FD’s has a left side a
proper subset of the key.

Another Example

Beers (name, manf, manfAddr).
¢ FD’s = name — manf, manf — manfAddr.
e Only key is name.

[1 manf — manfAddr violates BCNF with a
left side unrelated to any key.

10

Decomposition to Reach BCNF

Setting: relation R, given FD’s F'. Suppose
relation R has BCNF violation X — B.

e We need only look among FD’s of F' for a
BCNF violation.

e Proof: Y — Ais a BCNF violation and
follows from F', then the computation of Y
used at least one FD X — B from F'.

[1 X must be a subset of Y.

[Thus, if Y is not a superkey, X cannot be
a superkey either, and X — B is also a
BCNEF violation.

11

1. Compute X7.
[1 Cannot be all attributes — why?
2. Decompose R into X+ and (R — X)) U X.

e

3. Find the FD’s for the decomposed relations.

[1 Project the FD’s from F = calculate
all consequents of F' that involve

only attributes from X or only from
(R—XT)UX.

12

Example

R = Drinkers(name, addr, beersLiked, manf,
favoriteBeer)

F =

1. name — addr

2. name — favoriteBeer

3. beersLiked — manf

Pick BCNF violation name — addr.

e Close the left side: name™ =
name addr favoriteBeer.

e Decomposed relations:

Drinkersl (name, addr, favoriteBeer)
Drinkers2(name, beerslLiked, manf)

e Projected FD’s (skipping a lot of work that
leads nowhere interesting):

[] For Drinkersl: name — addr and
name — favoriteBeer.

[1 For Drinkers2: beersLiked — manf.

13

e BCNF violations?

[1 For Drinkers1, name is key and all left
sides of FD’s are superkeys.

[1 For Drinkers2, {name, beersLiked} is

the key, and beersLiked — manf violates
BCNF.

Decompose Drinkers?

e Close beersLiked™ = beersLiked, manf.

e Decompose:

Drinkers3(beerslLiked, manf)
Drinkers4 (name, beerslLiked)

e Resulting relations are all in BCNF"

Drinkersl (name, addr, favoriteBeer)
Drinkers3(beerslLiked, manf)
Drinkers4 (name, beersLiked)

14

SNF

One FD structure causes problems:

e If you decompose, you can’t check the FD’s in
the decomposed relations.

e If you don’t decompose, you violate BCNF'.
Abstractly: AB — C' and C — B.

e In book: title city — theatre and theatre
— city.

e Another example: street city — zip, zip —
city.

Keys: {A,B} and {A,C}, but C — B has a left
side not a superkey.

e Suggests decomposition into BC' and AC.

[1 But you can’t check the FD AB — (' in
these relations.

15

Example

A = street, B = city, C = zip.

street

Z1p

545 Tech Sq. | 02138
545 Tech Sq. | 02139

city

Z1p

Cambridge 02138
Cambridge 02139

Join:
city street Z1p
Cambridge | 545 Tech Sq. 02138
Cambridge | 545 Tech Sq. 02139

16

“Elegant” Workaround
Define the problem away.

e A relation R is in 3NF iff for every nontrivial
FD X — A, either:

1. X is a superkey, or
2. A is prime = member of at least one key.

e Thus, the canonical problem goes away: you
don’t have to decompose because all attributes
are prime.

17

What 3NF Gives You

There are two important properties of a
decomposition:

1.

We should be able to recover from the
decomposed relations the data of the original.

[1 Recovery involves projection and join,
which we shall defer until we’ve discussed
relational algebra.

We should be able to check that the FD’s

for the original relation are satisfied by
checking the projections of those FD’s in the
decomposed relations.

Without proof, we assert that it is always
possible to decompose into BCNF and satisty

(1).

Also without proof, we can decompose into
3NF and satisfy both (1) and (2).

But it is not possible to decompose into BNCF
and get both (1) and (2).

[1 Street-city-zip is an example of this point.

18

