Inferring FD's

And this is important because . . .

 When we talk about improving relational designs, we often need to ask "does this FD hold in this relation?"

Given FD's $X1 \rightarrow A1$, $X2 \rightarrow A2 \cdots Xn \rightarrow An$, does FD $Y \rightarrow B$ necessarily hold in the same relation?

Start by assuming two tuples agree in Y . Use given FD's to infer other attributes on which they must agree. If B is among them, then yes, else no.

Algorithm

Define $Y^+ =$ closure of $Y =$ set of attributes functionally determined by Y :

- Dasis: $Y^+ := Y$.
- Induction: If $X \subseteq Y^+$, and $X \to A$ is a given \bullet г D , then add A to I^+ .

End when Y ⁺ cannot be changed.

- $A \rightarrow B, BC \rightarrow D.$
- \bullet $A^+ = AB$.
- \bigcup \bot \equiv \bigcup .
- $(A \cup \cdot)$ = $AD \cup D$.

Given Versus Implied FD's

Typically, we state a few FD's that are known to hold for a relation R.

- Other FD's may follow logically from the given FD's; these are implied FD's.
- We are free to choose any basis for the FD's of R – a set of FD's that imply all the FD's that hold for R.

Finding All Implied FD's

Motivation: Suppose we have a relation ABCD with some FD 's F . If we decide to decompose ABCD into ABC and AD, what are the FD's for ABC, AD?

- Example: $F = AB \rightarrow C, C \rightarrow D, D \rightarrow A$. It looks like just $AB \rightarrow C$ holds in ABC , but in fact $C \rightarrow A$ follows from F and applies to relation ABC.
- Problem is exponential in worst case.

Algorithm

For each set of attributes Λ compute Λ_{++} .

- Add $X \to A$ for each A in $X^+ X$.
- Ignore or drop some "obvious" dependencies that follow from others:
- 1. Trivial FD's: right side is a subset of left side.

 \bullet Consequence: no point in computing \emptyset^+

- 2. Drop $XY \to A$ if $X \to A$ holds.
	- \bullet Consequence: If X^+ is all attributes, then there is no point in computing closure of supersets of X .
- 3. Ignore FD's whose right sides are not single attributes.
- Notice that after we project the discovered FD's onto some relation, the FD's eliminated by rules 1, 2, and 3 can be inferred in the projected relation.

Example: $F = AB \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$. What FD's follow?

 $A^+=A; B^+=B$ (nothing).

•
$$
C^+ = ACD \text{ (add } C \to A).
$$

- $D^+ = AD$ (nothing new).
- $(AB)^{+} = ABCD$ (add $AB \rightarrow D$; skip all supersets of AB).
- $(BC)^{+}$ = ABCD (nothing new; skip all supersets of BC).
- $(BD)^{+} = ABCD$ (add $BD \rightarrow C$; skip all supersets of BD).

•
$$
(AC)^{+} = ACD
$$
; $(AD)^{+} = AD$; $(CD)^{+} =$
 ACD (nothing new).

- $(ACD)^{+} = ACD$ (nothing new).
- All other sets contain AB , BC , or BD , so skip.
- Thus, the only interesting FD's that follow from F are: $C \rightarrow A$, $AB \rightarrow D$, $BD \rightarrow C$.

Normalization

 $Goal = BCNF = Boyce-Cond Normal Form = all$ FD's follow from the fact "key \rightarrow everything."

 Formally, R is in BCNF if every nontrivial FD for R, say $X \to A$, has X a superkey.

Why?

- 1. Guarantees no redundancy due to FD's.
- 2. Guarantees no *update anomalies* $=$ one occurrence of a fact is updated, not all.
- Guarantees no *deletion anomalies* $=$ valid fact $\overline{3}$. is lost when tuple is deleted.

Example of Problems

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

FD's:

- 1. name \rightarrow addr
- 2. name \rightarrow favoriteBeer
- 3. beersLiked \rightarrow manf
- ???'s are redundant, since we can figure them out from the FD's.
- Update anomalies: If Janeway gets transferred to the Intrepid, will we change addr in each of her tuples?
- Deletion anomalies: If nobody likes Bud, we lose track of Bud's manufacturer.

Each of the given FD's is a BCNF violation:

- $Key = {name, beersLiked}$
	- ✦ Each of the given FD's has a left side a proper subset of the key.

Another Example

Beers(name, manf, manfAddr).

- $FD's = name \rightarrow manf, manf \rightarrow manfAddr.$ \bullet
- Only key is name.
	- \bullet manf \rightarrow manfAddr violates BCNF with a left side unrelated to any key.

Decomposition to Reach BCNF

Setting: relation R , given FD's F . Suppose relation R has BCNF violation $X \to B$.

- We need only look among FD 's of F for a BCNF violation.
- Proof: If $Y \rightarrow A$ is a BCNF violation and follows from F , then the computation of Y^+ used at least one FD $X \to B$ from F.
	- \bullet X must be a subset of Y.
	- \bullet Thus, if Y is not a superkey, X cannot be a superkey either, and $X \rightarrow B$ is also a BCNF violation.

1. Compute Λ^+ .

Cannot be all attributes — why?

2. Decompose R into X^+ and $(R - X^+) \cup X$.

- 3. Find the FD's for the decomposed relations.
	- Project the FD's from $F =$ calculate all consequents of F that involve only attributes from A_+ or only from $(R-X^+) \cup X$.

 $R =$ Drinkers (name, addr, beersLiked, manf, favoriteBeer)

 $F =$

- 1. name \rightarrow addr
- 2. name \rightarrow favoriteBeer
- 3. beersLiked \rightarrow manf

Pick BCNF violation name \rightarrow addr.

- Close the left side: $name⁺$ name addr favoriteBeer.
- Decomposed relations:

Drinkers1(name, addr, favoriteBeer) Drinkers2(name, beersLiked, manf)

- Projected FD's (skipping a lot of work that leads nowhere interesting):
	- \bigstar For Drinkers1: name \rightarrow addr and name \rightarrow favoriteBeer.
	- For Drinkers2: beersLiked \rightarrow manf.
- BCNF violations?
	- \blacklozenge For Drinkers1, name is key and all left sides of FD's are superkeys.
		- For Drinkers2, {name, beersLiked} is the key, and beersLiked \rightarrow manf violates BCNF.

Decompose Drinkers2

- Close beersLiked⁺ = beersLiked, manf.
- Decompose:

Drinkers3(beersLiked, manf) Drinkers4(name, beersLiked)

Resulting relations are all in BCNF:

Drinkers1(name, addr, favoriteBeer) Drinkers3(beersLiked, manf) Drinkers4(name, beersLiked)

3NF

One FD structure causes problems:

- If you decompose, you can't check the FD's in the decomposed relations.
- If you don't decompose, you violate BCNF.

Abstractly: $AB \rightarrow C$ and $C \rightarrow B$.

- In book: title city \rightarrow theatre and theatre \sim \sim \sim \sim
- Another example: street city \rightarrow zip, zip \rightarrow city.

Keys: $\{A, B\}$ and $\{A, C\}$, but $C \rightarrow B$ has a left side not a superkey.

- Suggests decomposition into BC and AC.
	- \triangleleft But you can't check the FD $AB \rightarrow C$ in these relations.

$A =$ street, $B =$ city, $C =$ zip.

Join:

"Elegant" Workaround

Define the problem away.

- A relation R is in 3NF iff for every nontrivial FD $X \rightarrow A$, either:
	- X is a superkey, or $\mathbf{1}$.
	- 2. A is $prime = member$ of at least one key.
- Thus, the canonical problem goes away: you don't have to decompose because all attributes are prime.

What 3NF Gives You

There are two important properties of a decomposition:

- $\mathbf{1}$. We should be able to recover from the decomposed relations the data of the original.
	- ✦ Recovery involves pro jection and join, which we shall defer until we've discussed relational algebra.
- 2. We should be able to check that the FD's for the original relation are satisfied by checking the pro jections of those FD's in the decomposed relations.
- Without proof, we assert that it is always possible to decompose into BCNF and satisfy $(1).$
- Also without proof, we can decompose into 3NF and satisfy both (1) and (2).
- But it is not possible to decompose into BNCF and get both (1) and (2) .

✦ Street-city-zip is an example of this point.