
Inferring FD's

And this is important because . . .

� When we talk about improving relational
designs, we often need to ask \does this FD
hold in this relation?"

Given FD's X1 ! A1, X2 ! A2 � � �Xn ! An,
does FD Y ! B necessarily hold in the same
relation?

� Start by assuming two tuples agree in Y . Use
given FD's to infer other attributes on which
they must agree. If B is among them, then
yes, else no.

1

Algorithm

De�ne Y + = closure of Y = set of attributes
functionally determined by Y :

� Basis: Y + := Y .

� Induction: If X � Y +, and X ! A is a given
FD, then add A to Y +.

X
A

Y + new Y +

� End when Y + cannot be changed.

2

Example

A! B, BC ! D.

� A+ = AB.

� C+ = C.

� (AC)+ = ABCD.

A

C

B

D

3

Given Versus Implied FD's

Typically, we state a few FD's that are known to
hold for a relation R.

� Other FD's may follow logically from the
given FD's; these are implied FD's.

� We are free to choose any basis for the FD's
of R | a set of FD's that imply all the FD's
that hold for R.

4

Finding All Implied FD's

Motivation: Suppose we have a relation ABCD
with some FD's F . If we decide to decompose
ABCD into ABC and AD, what are the FD's for
ABC, AD?

� Example: F = AB ! C, C ! D, D ! A.
It looks like just AB ! C holds in ABC, but
in fact C ! A follows from F and applies to
relation ABC.

� Problem is exponential in worst case.

5

Algorithm

For each set of attributes X compute X+.

� Add X ! A for each A in X+ �X.

� Ignore or drop some \obvious" dependencies
that follow from others:

1. Trivial FD's: right side is a subset of left side.

✦ Consequence: no point in computing ;+

or closure of full set of attributes.

2. Drop XY ! A if X ! A holds.

✦ Consequence: If X+ is all attributes, then
there is no point in computing closure of
supersets of X.

3. Ignore FD's whose right sides are not single
attributes.

� Notice that after we project the discovered
FD's onto some relation, the FD's eliminated
by rules 1, 2, and 3 can be inferred in the

projected relation.

6

Example

Example: F = AB ! C, C ! D, D ! A. What
FD's follow?

� A+ = A; B+ = B (nothing).

� C+ = ACD (add C ! A).

� D+ = AD (nothing new).

� (AB)+ = ABCD (add AB ! D; skip all
supersets of AB).

� (BC)+ = ABCD (nothing new; skip all
supersets of BC).

� (BD)+ = ABCD (add BD ! C; skip all
supersets of BD).

� (AC)+ = ACD; (AD)+ = AD; (CD)+ =
ACD (nothing new).

� (ACD)+ = ACD (nothing new).

� All other sets contain AB, BC, or BD, so
skip.

� Thus, the only interesting FD's that follow
from F are: C ! A, AB ! D, BD ! C.

7

Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD's follow from the fact \key ! everything."

� Formally, R is in BCNF if every nontrivial FD
for R, say X ! A, has X a superkey.

✦ \Nontrivial" = right-side attribute not in
left side.

Why?

1. Guarantees no redundancy due to FD's.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.

8

Example of Problems

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway ??? WickedAle Pete's ???
Spock Enterprise Bud ??? Bud

FD's:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� ???'s are redundant, since we can �gure them
out from the FD's.

� Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of
her tuples?

� Deletion anomalies: If nobody likes Bud, we
lose track of Bud's manufacturer.

9

Each of the given FD's is a BCNF violation:

� Key = fname, beersLikedg

✦ Each of the given FD's has a left side a
proper subset of the key.

Another Example

Beers(name, manf, manfAddr).

� FD's = name ! manf, manf ! manfAddr.

� Only key is name.

✦ manf ! manfAddr violates BCNF with a
left side unrelated to any key.

10

Decomposition to Reach BCNF

Setting: relation R, given FD's F . Suppose
relation R has BCNF violation X ! B.

� We need only look among FD's of F for a
BCNF violation.

� Proof: If Y ! A is a BCNF violation and
follows from F , then the computation of Y +

used at least one FD X ! B from F .

✦ X must be a subset of Y .

✦ Thus, if Y is not a superkey, X cannot be
a superkey either, and X ! B is also a
BCNF violation.

11

1. Compute X+.

✦ Cannot be all attributes | why?

2. Decompose R into X+ and (R �X+) [X.

XR

X+

3. Find the FD's for the decomposed relations.

✦ Project the FD's from F = calculate
all consequents of F that involve
only attributes from X+ or only from
(R �X+) [X.

12

Example

R = Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

F =

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

Pick BCNF violation name ! addr.

� Close the left side: name+ =
name addr favoriteBeer.

� Decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

� Projected FD's (skipping a lot of work that
leads nowhere interesting):

✦ For Drinkers1: name ! addr and
name ! favoriteBeer.

✦ For Drinkers2: beersLiked ! manf.

13

� BCNF violations?

✦ For Drinkers1, name is key and all left
sides of FD's are superkeys.

✦ For Drinkers2, {name, beersLiked} is
the key, and beersLiked ! manf violates
BCNF.

Decompose Drinkers2

� Close beersLiked+ = beersLiked, manf.

� Decompose:

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

� Resulting relations are all in BCNF:

Drinkers1(name, addr, favoriteBeer)

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

14

3NF

One FD structure causes problems:

� If you decompose, you can't check the FD's in
the decomposed relations.

� If you don't decompose, you violate BCNF.

Abstractly: AB ! C and C ! B.

� In book: title city ! theatre and theatre

! city.

� Another example: street city ! zip, zip !
city.

Keys: fA;Bg and fA;Cg, but C ! B has a left
side not a superkey.

� Suggests decomposition into BC and AC.

✦ But you can't check the FD AB ! C in
these relations.

15

Example

A = street, B = city, C = zip.

street zip

545 Tech Sq. 02138
545 Tech Sq. 02139

city zip

Cambridge 02138
Cambridge 02139

Join:

city street zip

Cambridge 545 Tech Sq. 02138
Cambridge 545 Tech Sq. 02139

16

\Elegant" Workaround

De�ne the problem away.

� A relation R is in 3NF i� for every nontrivial
FD X ! A, either:

1. X is a superkey, or

2. A is prime = member of at least one key.

� Thus, the canonical problem goes away: you
don't have to decompose because all attributes
are prime.

17

What 3NF Gives You

There are two important properties of a
decomposition:

1. We should be able to recover from the
decomposed relations the data of the original.

✦ Recovery involves projection and join,
which we shall defer until we've discussed
relational algebra.

2. We should be able to check that the FD's
for the original relation are satis�ed by
checking the projections of those FD's in the
decomposed relations.

� Without proof, we assert that it is always
possible to decompose into BCNF and satisfy
(1).

� Also without proof, we can decompose into
3NF and satisfy both (1) and (2).

� But it is not possible to decompose into BNCF
and get both (1) and (2).

✦ Street-city-zip is an example of this point.

18

