
Relational Model

� Table = relation.

� Column headers = attributes.

� Row = tuple

name manf

WinterBrew Pete's
BudLite A.B.
� � � � � �

Beers

� Relation schema = name(attributes) + other
structure info., e.g., keys, other constraints.
Example: Beers(name, manf).

✦ Order of attributes is arbitrary, but in
practice we need to assume the order
given in the relation schema.

� Relation instance is current set of rows for a
relation schema.

� Database schema = collection of relation
schemas.

1



Keys in Relations

An attribute or set of attributes K is a key for a
relation R if we expect that in no instance of R
will two di�erent tuples agree on all the attributes
of K.

� Indicate a key by underlining the key
attributes.

� Example: If name is a key for Beers:

Beers(name, manf)

2



Why Relations?

� Very simple model.

� Often a good match for the way we think
about our data.

� Abstract model that underlies SQL, the most
important language in DBMS's today.

✦ But SQL uses \bags," while the abstract
relational model is set-oriented.

3



Relational Design

Simplest approach (not always best): convert
each E.S. to a relation and each relationship to a
relation.

Entity Set ! Relation

E.S. attributes become relational attributes.

name manf

Beers

Becomes:

Beers(name, manf)

4



E/R Relationships ! Relations

Relation has attribute for key attributes of each
E.S. that participates in the relationship.

� Add any attributes that belong to the
relationship itself.

� Renaming attributes OK.

✦ Essential if multiple roles for an E.S.

5



namename

Drinkers Likes Beers

manf

addr

Favorite
Buddies

Married

1 2

husband wife

Likes(drinker, beer)
Favorite(drinker, beer)
Married(husband, wife)
Buddies(name1, name2)

� For one-one relation Married, we can choose
either husband or wife as key.

6



Combining Relations

Sometimes it makes sense to combine relations.

� Common case: Relation for an E.S. E plus the
relation for some many-one relationship from
E to another E.S.

Example

Combine Drinker(name, addr) with
Favorite(drinker, beer) to get
Drinker1(name, addr, favBeer).

� Danger in pushing this idea too far:
redundancy.

� e.g., combining Drinker with Likes causes the
drinker's address to be repeated viz.:

name addr beer

Sally 123 Maple Bud

Sally 123 Maple Miller

� Notice the di�erence: Favorite is many-one;
Likes is many-many.

7



Weak Entity Sets, Relationships ! Relations

� Relation for a weak E.S. must include its full
key (i.e., attributes of related entity sets) as
well as its own attributes.

� A supporting (double-diamond) relationship
yields a relation that is actually redundant
and should be deleted from the database
schema.

8



Example

@Logins Hosts

name name

Hosts(hostName)
Logins(loginName, hostName)
At(loginName, hostName, hostName2)

� In At, hostName and hostName2 must be the
same host, so delete one of them.

� Then, Logins and At become the same
relation; delete one of them.

� In this case, Hosts' schema is a subset of
Logins' schema. Delete Hosts?

9



Subclasses ! Relations

Three approaches:

1. Object-oriented: each entity is in one class.
Create a relation for each class, with all the
attributes for that class.

✦ Don't forget inherited attributes.

2. E/R style: an entity is in a network of classes
related by isa. Create one relation for each
E.S.

✦ An entity is represented in the relation for
each subclass to which it belongs.

✦ Relation has only the attributes attached
to that E.S. + key.

3. Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

✦ Put NULL in attributes not relevant to a
given entity.

10



Example

isa

Beers

Ales

manf

color

name

11



OO-Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew Pete's dark

Ales

E/R Style

name manf

Bud A.B.

SummerBrew Pete's

Beers

name color

SummerBrew dark

Ales

12



Using Nulls

name manf color

Bud A.B. NULL

SummerBrew Pete's dark

Beers

13



Functional Dependencies

X ! A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

� Important as a constraint on the data that
may appear within a relation.

✦ Schema-level control of data.

� Mathematical tool for explaining the process
of \normalization" | vital for redesigning
database schemas when original design has
certain aws.

14



Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete's WickedAle
Spock Enterprise Bud A.B. Bud

� Reasonable FD's to assert:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� Note: These happen to imply the underlined
key, but the FD's give more detail than the
mere assertion of a key.

15



� Key (in general) functionally determines all
attributes. In our example:

name beersLiked ! addr favoriteBeer beerManf

� Shorthand: combine FD's with common left
side by concatenating their right sides.

� When FD's are not of the form Key ! other
attribute(s), then there is typically an attempt
to \cram" too much into one relation.

� Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar ! price

16



Formal Notion of Key

K is a key for relation R if:

1. K ! all attributes of R.

2. For no proper subset of K is (1) true.

� If K at least satis�es (1), then K is a
superkey.

FD Conventions

� X, etc., represent sets of attributes; A etc.,
represent single attributes.

� No set formers in FD's, e.g., ABC instead of
fA;B;Cg.

17



Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

� fname, beersLikedg FD's all attributes, as
seen.

✦ Shows fname, beersLikedg is a superkey.

� name ! beersLiked is false, so name not a
superkey.

� beersLiked ! name also false, so beersLiked

not a superkey.

� Thus, fname, beersLikedg is a key.

� No other keys in this example.

✦ Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.

18



Who Determines Keys/FD's?

� We could de�ne a relation schema by simply
giving a single key K.

✦ Then the only FD's asserted are that
K ! A for every attribute A.

✦ No surprise: K is then the only key
for those FD's, according to the formal
de�nition of \key."

� Or, we could assert some FD's and deduce one
or more keys by the formal de�nition.

✦ E/R diagram implies FD's by key
declarations and many-one relationship
declarations.

� Rule of thumb: FD's either come from
keyness, many-1 relationship, or from physics.

✦ E.g., \no two courses can meet in the
same room at the same time" yields
room time ! course.

19


