
Relational Model

� Table = relation.

� Column headers = attributes.

� Row = tuple

name manf

WinterBrew Pete's
BudLite A.B.
� � � � � �

Beers

� Relation schema = name(attributes) + other
structure info., e.g., keys, other constraints.
Example: Beers(name, manf).

✦ Order of attributes is arbitrary, but in
practice we need to assume the order
given in the relation schema.

� Relation instance is current set of rows for a
relation schema.

� Database schema = collection of relation
schemas.
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Keys in Relations

An attribute or set of attributes K is a key for a
relation R if we expect that in no instance of R
will two di�erent tuples agree on all the attributes
of K.

� Indicate a key by underlining the key
attributes.

� Example: If name is a key for Beers:

Beers(name, manf)
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Why Relations?

� Very simple model.

� Often a good match for the way we think
about our data.

� Abstract model that underlies SQL, the most
important language in DBMS's today.

✦ But SQL uses \bags," while the abstract
relational model is set-oriented.
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Relational Design

Simplest approach (not always best): convert
each E.S. to a relation and each relationship to a
relation.

Entity Set ! Relation

E.S. attributes become relational attributes.

name manf

Beers

Becomes:

Beers(name, manf)
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E/R Relationships ! Relations

Relation has attribute for key attributes of each
E.S. that participates in the relationship.

� Add any attributes that belong to the
relationship itself.

� Renaming attributes OK.

✦ Essential if multiple roles for an E.S.
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namename

Drinkers Likes Beers

manf

addr

Favorite
Buddies

Married

1 2

husband wife

Likes(drinker, beer)
Favorite(drinker, beer)
Married(husband, wife)
Buddies(name1, name2)

� For one-one relation Married, we can choose
either husband or wife as key.
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Combining Relations

Sometimes it makes sense to combine relations.

� Common case: Relation for an E.S. E plus the
relation for some many-one relationship from
E to another E.S.

Example

Combine Drinker(name, addr) with
Favorite(drinker, beer) to get
Drinker1(name, addr, favBeer).

� Danger in pushing this idea too far:
redundancy.

� e.g., combining Drinker with Likes causes the
drinker's address to be repeated viz.:

name addr beer

Sally 123 Maple Bud

Sally 123 Maple Miller

� Notice the di�erence: Favorite is many-one;
Likes is many-many.
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Weak Entity Sets, Relationships ! Relations

� Relation for a weak E.S. must include its full
key (i.e., attributes of related entity sets) as
well as its own attributes.

� A supporting (double-diamond) relationship
yields a relation that is actually redundant
and should be deleted from the database
schema.
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Example

@Logins Hosts

name name

Hosts(hostName)
Logins(loginName, hostName)
At(loginName, hostName, hostName2)

� In At, hostName and hostName2 must be the
same host, so delete one of them.

� Then, Logins and At become the same
relation; delete one of them.

� In this case, Hosts' schema is a subset of
Logins' schema. Delete Hosts?
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Subclasses ! Relations

Three approaches:

1. Object-oriented: each entity is in one class.
Create a relation for each class, with all the
attributes for that class.

✦ Don't forget inherited attributes.

2. E/R style: an entity is in a network of classes
related by isa. Create one relation for each
E.S.

✦ An entity is represented in the relation for
each subclass to which it belongs.

✦ Relation has only the attributes attached
to that E.S. + key.

3. Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

✦ Put NULL in attributes not relevant to a
given entity.
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Example

isa

Beers

Ales

manf

color

name
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OO-Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew Pete's dark

Ales

E/R Style

name manf

Bud A.B.

SummerBrew Pete's

Beers

name color

SummerBrew dark

Ales
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Using Nulls

name manf color

Bud A.B. NULL

SummerBrew Pete's dark

Beers
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Functional Dependencies

X ! A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

� Important as a constraint on the data that
may appear within a relation.

✦ Schema-level control of data.

� Mathematical tool for explaining the process
of \normalization" | vital for redesigning
database schemas when original design has
certain aws.
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Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete's WickedAle
Spock Enterprise Bud A.B. Bud

� Reasonable FD's to assert:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� Note: These happen to imply the underlined
key, but the FD's give more detail than the
mere assertion of a key.
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� Key (in general) functionally determines all
attributes. In our example:

name beersLiked ! addr favoriteBeer beerManf

� Shorthand: combine FD's with common left
side by concatenating their right sides.

� When FD's are not of the form Key ! other
attribute(s), then there is typically an attempt
to \cram" too much into one relation.

� Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar ! price
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Formal Notion of Key

K is a key for relation R if:

1. K ! all attributes of R.

2. For no proper subset of K is (1) true.

� If K at least satis�es (1), then K is a
superkey.

FD Conventions

� X, etc., represent sets of attributes; A etc.,
represent single attributes.

� No set formers in FD's, e.g., ABC instead of
fA;B;Cg.
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Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

� fname, beersLikedg FD's all attributes, as
seen.

✦ Shows fname, beersLikedg is a superkey.

� name ! beersLiked is false, so name not a
superkey.

� beersLiked ! name also false, so beersLiked

not a superkey.

� Thus, fname, beersLikedg is a key.

� No other keys in this example.

✦ Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.
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Who Determines Keys/FD's?

� We could de�ne a relation schema by simply
giving a single key K.

✦ Then the only FD's asserted are that
K ! A for every attribute A.

✦ No surprise: K is then the only key
for those FD's, according to the formal
de�nition of \key."

� Or, we could assert some FD's and deduce one
or more keys by the formal de�nition.

✦ E/R diagram implies FD's by key
declarations and many-one relationship
declarations.

� Rule of thumb: FD's either come from
keyness, many-1 relationship, or from physics.

✦ E.g., \no two courses can meet in the
same room at the same time" yields
room time ! course.
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