Oracle 8 Nested Tables

Another structuring tool provided in Oracle 8 is
the ability to have a relation with an attribute
whose value is not just an object, but a (multi)set
of objects, i.e., a relation.

e Keyword THE allows us to treat a nested
relation as a regular relation, e.g., in FROM
clauses.

e Keywords CAST(MULTISET(...)) let us turn
the result of a query into a nested relation.
Defining Table Types

If we have an object type, we can create a new
type that is a bag of that type by AS TABLE OF.

Example

Suppose we have a more complicated beer type:

CREATE TYPE BeerType AS OBJECT (
name CHAR(20),
kind CHAR(5),
color CHAR(H)

)

/

We may create a type that is a (nested) table of
objects of this type by:

CREATE TYPE BeerTableType AS

TABLE OF BeerType;
/

Now, we can define a relation of manufacturers
that will nest their beers inside.

e In a sense, we normalize an unnormalized
relation, since other data about the
manufacturer appears only once no matter
how many beers they produce.

CREATE TABLE Manfs (
name CHAR(30),
addr CHAR(50),
beers BeerTableType

e However, to tell the system how to store
the little beers tables, we must follow this
statement, prior to the semicolon, by a
statement

NESTED TABLE beers STORE AS
BeerTable;

e The name of the table that stores the tuples
for the nesteed beers relations is arbitrary;
here we used BeerTable.

Querying With Nested Tables

An attribute that is a nested table can be printed
like any other attribute.

e The value has two type constructors, one for
the table, one for the type of its tuples.

Example

List the beers made by Anheuser-Busch.

SELECT beers
FROM Manfs
WHERE name = ’Anheuser Busch’;

e A single value will be printed, looking
something like:

BeerTableType (
BeerType(’Bud’, ’lager’, ’yello’),
BeerType(’Lite’, ’malt’, ’pale’),...

Operating on Nested Tables

Use THE to get the nested table itself, then treat it
like any other relation.

Example

Find the ales made by Anheuser-Busch.

SELECT bb.name
FROM THE(
SELECT beers
FROM Manfs
WHERE name = ’Anheuser Busch’
) bb
WHERE bb.kind = ’ale’;

Casting to Create Nested Tables

Create a value for a nested table by using a select-
from-where query and “casting” it to the table

type.

Example

e Suppose we have a relation Beers(beer,
manf), where beer is a BeerType object and
manf its manufacturer.

e We want to insert into Manfs a tuple for
Pete’s Brewing Co., with all the beers brewed
by Pete’s (according to Beers) in one nested
table.

INSERT INTO Manfs VALUES(
’Pete’’s’, ’Palo Alto’,
CAST(
MULTISET(
SELECT bb.beer
FROM Beers bb
WHERE bb.manf = ’Pete’’s’
) AS BeerType

Transactions

— units of work that must be:

1. Isolated = appear to have been executed when
no other DB operations were being performed.

[1 Often called serializable behavior.

2. Atomic = either all work is done, or none of it.

Commit/Abort Decision

Each transaction ends with either:

1.

Commit = the work of the transaction is
installed in the database; previously its
changes may be invisible to other transactions.

Abort = no changes by the transaction appear
in the database; it is as if the transaction
never occurred.

[1 ROLLBACK is the term used in SQL and
the Oracle system.

In the ad-hoc query interface (e.g., Oracle’s
SQLplus), transactions are single queries or
modification statements.

[Oracle allows SET TRANSACTION
READ ONLY to begin a multistatement
transaction that doesn’t change any data,
but needs to see a consistent “snapshot”

of the data.

In program interfaces (e.g., Pro™C or
PL/SQL), transactions begin whenever the
database is accessed, and end when either a
COMMIT or ROLLBACK statement is executed.

Example

Sells(bar, beer, price)

e Joe’s Bar sells Bud for $2.50 and Miller for
$3.00.

e Sally is querying the database for the highest
and lowest price Joe charges:

(1) SELECT MAX(price) FROM Sells
WHERE bar = Joe’’s Bar’;

(2) SELECT MIN(price) FROM Sells
WHERE bar = Joe’’s Bar’;

e At the same time, Joe has decided to replace
Miller and Bud by Heineken at $3.50:

(3) DELETE FROM Sells
WHERE bar = Joe’’s Bar’ AND
(beer = ’Miller’ OR beer = ’Bud’);

(4) INSERT INTO Sells
VALUES(’Joe’’s bar’, ’Heineken’,

3.50);

e If the order of statements is 1, 3, 4, 2, then it
appears to Sally that Joe’s minimum price is

9

greater than his maximum price.

Fix the problem by grouping Sally’s two
statements into one transaction, e.g. with one
PL/SQL statement.

10

Example: Problem With Rollback

Suppose Joe executes statement 4 (insert
Heineken), but then, during the transaction thinks
better of it and issues a ROLLBACK statement.

e If Sally is allowed to execute her statement 1
(find max) just before the rollback, she gets
the answer $3.50, even though Joe doesn’t sell
any beer for $3.50.

e Fix by making statement 4 a transaction, or
part of a transaction, so its effects cannot be
seen by Sally unless there is a COMMIT action.

11

SQL2 Isolation Levels

1solation levels determine what a transaction is
allowed to see. The declaration, valid for one
transaction, is:

SET TRANSACTION ISOLATION LEVEL X ;
where:

e X = SERIALIZABLE: this transaction must
execute as if at a point in time, where all
other transactions occurred either completely
before or completely after.

[1 Example: Suppose Sally’s statements
1 and 2 are one transaction and
Joe’s statements 3 and 4 are another
transaction. If Sally’s transaction runs at
isolation level SERIALIZABLE, she would
see the Sells relation either before or

after statements 3 and 4 ran, but not in
the middle.

e X = READ COMMITTED: this transaction can
only read committed data.

[1 Example: if transactions are as above,
Sally could see the original Sells for

12

statement 1 and the completely changed
Sells for statement 2.

X = REPEATABLE READ: if a transaction reads
data twice, then what it saw the first time, it
will see the second time (it may see more the
second time).

[Example: If 1 is executed before 3, then 2
must see the Bud and Miller tuples when
it computes the min, even if it executes
after 3. But if 1 executes between 3 and
4, then 2 may see the Heineken tuple.

X = READ UNCOMMITTED: essentially no
constraint, even on reading data written and
then removed by a rollback.

[1 Example: 1 and 2 could see Heineken,
even if Joe rolled back his transaction.

13

Authorization in SQL2

e File systems identify certain access privileges
on files, e.g., read, write, execute.

e In partial analogy, SQL2 identifies six access
privileges on relations, of which the most
important are:

1. SELECT = the right to query the relation.

2. INSERT = the right to insert tuples into
the relation — may refer to one attribute,
in which case the privilege is to specity
only one column of the inserted tuple.

3. DELETE = the right to delete tuples from
the relation.

4. UPDATE = the right to update tuples of
the relation — may refer to one attribute.

14

Granting Privileges

You have all possible privileges to the relations
you create.

You may grant privileges to any user if you
have those privileges “with grant option.”

[You have this option to your own
relations.

Example

1.

Here, Sally can query Sells and can change
prices, but cannot pass on this power:

GRANT SELECT ON Sells,
UPDATE (price) ON Sells
TO sally;

Here, Sally can also pass these privileges to
whom she chooses:
GRANT SELECT ON Sells,
UPDATE (price) ON Sells
TO sally
WITH GRANT OPTION;

15

Revoking Privileges

e Your privileges can be revoked.

e Syntax is like granting, but REVOKE ... FROM
instead of GRANT ... TO.

e Determining whether or not you have a
privilege is tricky, involving “grant diagrams”
as in text. However, the basic principles are:

a) If you have been given a privilege by
several different people, then all of them
have to revoke in order for you to lose the
privilege.

b) Revocation is transitive. if A granted
P to B, who granted P to C, and then
A revokes P from B, it is as if B also
revoked P from C'.

16

