
9.3 Tuple Relational Calculus: Query Language for Relational Databases

 - non-procedural/declarative language
 - uses first-order predicate logic to express queries
 - equivalent to relational algebra

 A TRC Query is expressed as

 { t1.A1, t2.A2, ..., tn.An | COND(t1, t2, ..., tn, tn+1, ..., tn+m) }

 where
 - ti, ..., tn+m are tuple variables,
 - Ai is an attribute of the relation on which ti ranges.
 - COND is a formula in predicate logic involving the tuple
 variables t1, ..., tn+m where t1, ..., tn are the ONLY FREE
 VARIABLES (the remaining are BOUND by quantifiers)
 The syntax for COND is defined as follows:
 ATOMIC FORMULAS:
 1. R(ti) is an atomic formula where R is a relation and
 ti is a tuple variable.
 2. ti.A op tj.B is an atomic formula where op is one of
 <, <=, =, <>, >, >=
 3. ti.A op c is an atomic formula where c is a constant
 4. c op ti.A is an atomic formula where c is a constant
 EACH of the above atomic formulas evaluate to TRUE/FALSE

 FORMULAS:
 1. Each atomic formula is a formula
 2. if F1 and F2 are formulas then so are (F1 and F2),
 (F1 or F2), not (F1)
 2. if F is a formula and t is a tuple variable then
 so are (Exists t)(F), (Forall t)(F)

Query Examples: (These are the queries from problem 7.18 of the
 El-Masri/Navathe text).

(1) Get names of all employees in department 5 who work more than 10
 hours/week on the ProductX project.

 { t.fname, t.minit, t.lname |
 employee(t) and
 (Exists w)(Exists p)(works_on(w) and project(p) and
 t.ssn = w.essn and w.pno = p.pnumber and
 w.hours >= 10 and p.pname = 'ProductX') }

(2) Get names of all employees who have a dependent with the same first
 name as themselves.

 { t.fname, t.minit, t.lname |
 employee(t) and
 (Exists d)(dependent(d) and t.ssn = d.essn and
 t.fname = d.dependent_name) }

(3) Get the names of all employees who are directly supervised by
 Franklin Wong.

 { t.fname, t.minit, t.lname |
 employee(t) and
 (Exists e)(employee(e) and t.superssn = e.ssn and
 e.fname = 'Franklin' and e.lname = 'Wong') }

(4) Get the names of all employees who work on every project.

 { t.fname, t.minit, t.lname |
 employee(t) and
 (Forall p)(project(p) -> (Exists w)(works_on(w) and
 w.essn = t.ssn and
 e.pno = p.pnumber)) }

(5) Get the names of employees who do not work on any project.

 { t.fname, t.minit, t.lname |
 employee(t) and
 not (Exists w)(works_on(w) and w.essn = t.ssn) }

(6) Get the names and addresses of employees who work for at least one
 project located in Houston but whose department does not have a
 location in Houston.

 { t.fname, t.minit, t.lname |
 employee(t) and
 (Exists w)(Exists p)(works_on(w) and project(p) and
 t.ssn = w.essn and w.pno = p.pnumber and
 p.plocation = 'Houston') and
 not (Exists d)(dept_locations(d) and t.dno = d.dnumber and
 d.dlocation = 'Houston') }

(7) Get the names and addresses of employees who work for at least one
 project located in Houston or whose department does not have a
 location in Houston. (Note: this is a slight variation of the
 previous query with 'but' replaced by 'or').

 { t.fname, t.minit, t.lname |
 employee(t) and
 ((Exists w)(Exists p)(works_on(w) and project(p) and
 t.ssn = w.essn and w.pno = p.pnumber and
 p.plocation = 'Houston') or
 not (Exists d)(dept_locations(d) and t.dno = d.dnumber and
 d.dlocation = 'Houston')) }

(8) Get the last names of all department managers who have no dependents.

 { t.lname | employee(t) and
 (Exists d)(department(d) and t.ssn = d.mgrssn and
 not (Exists p)(dependent(p) and
 t.ssn = p.essn)) }

