
Datalog: Query Language for Relational Databases

Syntax:

- Atomic Formula:
 (1) p(x1, ..., xn) where p is a relation name and
 x1, ..., xn are either constants or variables.
 (2) x <op> y where x and y are either constants or variables and <op> is
 one of the six comparison operators: <, <=, >, >=, =, !=

 Variables that appear only once in a rule can be replaced by
 anonymous variables (represented by underscores). NOTE: Every
 anonymous variable is different from all other variables.

- Datalog rule:

 p :- q1, ..., qn.

 where p is an atomic formula and
 q1, ..., qn are either atomic formula or
 negated atomic formula (i.e. atomic formula preceded by not)
 p is referred to as the head of the rule.
 q1, ..., qn are referred to as subgoals.

- Safe Datalog rule: A Datalog rule p :- q1, ..., qn. is safe
 (1) if every variable that occurs in a negated subgoal also
 appears in a positive subgoal and
 (2) if every variable that appears in the head of the rule also
 appears in the body of the rule.

- Datalog query:

 set of safe Datalog rules with at least one rule defining the answer
 predicate, which will correspond to the answers of the query.

Query Examples: (These are the queries from problem 7.18 of the
 El-Masri/Navathe text).

(1) Get names of all employees in department 5 who work more than 10
 hours/week on the ProductX project.

 answer(F,M,L) :- employee(F,M,L,S,_,_,_,_,_,5),
 works_on(S,P,H),
 project('ProductX',P,_,_),
 H >= 10.

(2) Get names of all employees who have a dependent with the same first
 name as themselves.

 answer(F,M,L) :- employee(F,M,L,S,_,_,_,_,_,_), dependent(S,F,_,_,_).

(3) Get the names of all employees who are directly supervised by
 Franklin Wong.

 answer(F,M,L) :- employee(F,M,L,_,_,_,_,_,S,_),
 employee('Franklin',_,'Wong',S,_,_,_,_,_,_).

(4) Get the names of all employees who work on every project.

 temp1(S,P) :- employee(_,_,_,S,_,_,_,_,_,_,), project(_,P,_,_).
 temp2(S,P) :- works_on(S,P,_).
 temp3(S) :- temp1(S,P), not temp2(S,P).
 answer(F,M,L) :- employee(F,M,L,S,_,_,_,_,_,_), not temp3(S).

(5) Get the names of employees who do not work on any project.

 temp1(S) :- works_on(S,_,_).
 answer(F,M,L) :- employee(F,M,L,S,_,_,_,_,_,_), not temp1(S).

(6) Get the names and addresses of employees who work for at least one
 project located in Houston but whose department does not have a
 location in Houston.

 temp1(S) :- works_on(S,P,_), project(_,P,'Houston',_).
 temp2(S) :- employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
 answer(F,M,L,A) :- employee(F,M,L,S,_,A,_,_,_,_), temp1(S), temp2(S).

(7) Get the names and addresses of employees who work for at least one
 project located in Houston or whose department does not have a
 location in Houston. (Note: this is a slight variation of the
 previous query with 'but' replaced by 'or').

 temp1(S) :- works_on(S,P,_), project(_,P,'Houston',_).
 temp2(S) :- employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
 answer(F,M,L,A) :- employee(F,M,L,S,_,A,_,_,_,_), temp1(S).
 answer(F,M,L,A) :- employee(F,M,L,S,_,A,_,_,_,_), temp2(S).

(8) Get the last names of all department managers who have no dependents.

 temp1(S) :- dependent(S,_,_,_,_).
 answer(L) :- employee(_,_,L,S,_,_,_,_,_,_),
 department(_,_,S,_),
 not temp1(S).

Recursive Queries – Bill of Materials

create table component (
 part1 varchar2(20),
 part2 varchar2(20),
 amount number(7),
 attr char(1)
);

create table price (
 part varchar2(20),
 price number(7)
);

insert into component values('engine', 'sparkplug', 4, 'b');
insert into component values('engine', 'cylinder', 4, 'c');
insert into component values('engine', 'valve', 4, 'c');
insert into component values('engine', 'crankshaft', 1, 'c');
insert into component values('cylinder', 'piston', 1, 'c');
insert into component values('cylinder', 'connectinggrod', 1, 'c');
insert into component values('valve', 'gasket', 1, 'b');
insert into component values('valve', 'hanger', 2, 'c');
insert into component values('crankshaft', 'joint', 8, 'c');
insert into component values('piston', 'screw', 2, 'b');

insert into price values ('sparkplug', 10);
insert into price values ('screw', 2);
insert into price values ('gasket', 3);
insert into price values ('bolt', 2);

sub_part(X,Y,Q,T) :- comp(X,Y,Q,T).
sub_part(X,Y,Q,T) :- comp(Z,Y,Q2,T), sub_part(X,Z,Q1,T1),
 Q is Q1 * Q2.
look_for(P,Y,Q) :- sub_part(P,Y,Q,b).

basic_comp(P,B,sum(<Q>)) :- look_for(P,B,Q).

temp_cost(P,X) :- basic_comp(P,B,Q), price(B,C), X is Q * C.
cost(P,sum(<C>)) :- temp_cost(P,C).

