Datalog: Query Language for Relational Databases

Syntax:

- Atomic Formula:

(1) p(x1, ..., xn) where p is a relation name and
xl, ..., Xn are either constants or variables.
(2) x <op> y where x and y are either constants or variables and <op> is
one of the six comparison operators: <, <=, >, >=, =, !=

Variables that appear only once in a rule can be replaced by
anonymous variables (represented by underscores). NOTE: Every
anonymous variable is different from all other variables.

- Datalog rule:

p :- gl, ..., 9n.

where p is an atomic formula and
gl, ..., gn are either atomic formula or
negated atomic formula (i.e. atomic formula preceded by not)
p 1is referred to as the head of the rule.
gl, ..., gn are referred to as subgoals.

- Safe Datalog rule: A Datalog rule p :- gl, ..., gn. is safe
(1) if every variable that occurs in a negated subgoal also
appears in a positive subgoal and
(2) if every variable that appears in the head of the rule also
appears in the body of the rule.

- Datalog query:

set of safe Datalog rules with at least one rule defining the answer
predicate, which will correspond to the answers of the query.

Query Examples: (These are the queries from problem 7.18 of the
El-Masri/Navathe text).

(1)

Get names of all employees in department 5 who work more than 10
hours/week on the ProductX project.

answer (F,M,L) :- employee(F/M/L/S/_I_I_I_I_IS)/
works on(S,P,H),
project ('ProductXx',P, ,),

H >= 10.

Get names of all employees who have a dependent with the same first

name as themselves.

answer (F,M,L) :- employee(F,M,L,S, , , , , ,), dependent(S,F, ,

Get the names of all employees who are directly supervised by
Franklin Wong.

answer (F,M,L) :- employee(F,M,L, , , , , ,S,),

Get the names of all employees who work on every project.

templ(S,P) - employee(_I_I_ISI_I_I_I_I_I_I)I projeCt(_lP1_1_>-
temp2 (S,P) :- works on(S,P,).

temp3 (3S) :— templ (S,P), not temp2(S,P).

answer (F,M,L) :- employee(F,M,L,S, , , , , ,), not temp3(S).

Get the names of employees who do not work on any project.

templ (S) :- works on(S, ,).
answer (F,M,L) :- employee(¥F,M,L,S, , , , , ,), not templ(S).

14

) .

(6) Get the names and addresses of employees who work for at least one
project located in Houston but whose department does not have a
location in Houston.

templ (S) :- works on(S,P,), project(,P,'Houston',).
temp2 (s) :- employee (_1_1_1 SI_I_I_I_I_I D),
not dept locations (D, 'Houston').
answer (F,M,L,A) :- employee(F,M,L,S, ,A, , , ,), templ(S), temp2(S).

(7) Get the names and addresses of employees who work for at least one
project located in Houston or whose department does not have a
location in Houston. (Note: this is a slight variation of the
previous query with 'but' replaced by 'or').

templ (S) :- works on(S,P,), project(,P,'Houston',).
temp2 (S) i employee (717!7! Sriririririr D) ’

not dept locations (D, 'Houston').
answer (F,M,L,A) :- employee(F,M,L,S, ,A, , , ,), templ(S).
answer (F,M,L,A) :- employee(F,M,L,S, ,A, , , ,), temp2(S).

(8) Get the last names of all department managers who have no dependents.

templ (S) :- dependent(s, , , ,).
answer (L) :- employee(, ,L,S, , , , , ,),
_I_ISI_) ’

departmenE
(

(
not templ (S).

Recursive Queries - Bill of Materials

create table component (
partl varchar2(20),
part2 varchar2(20),
amount number (7),
attr char (1)

)

create table price (
part varchar2(20),
price number (7)

)7

'engine', 'sparkplug', 4, 'b');
'engine', 'cylinder', 4, 'c');
'engine', 'valve', 4, 'c');
'engine', 'crankshaft', 1, 'c');
'cylinder', 'piston', 1, 'c'")
'cylinder', 'connectinggrod', 1, 'c');
'valve', 'gasket', 1, 'b');

'valve', 'hanger', 2, 'c');
'crankshaft', 'joint', 8, 'c');
'piston', 'screw', 2, 'b');

insert into component values
insert into component values
insert into component values
insert into component values
insert into component values
insert into component values
insert into component values
insert into component values
insert into component values
insert into component values

’

—~ o~~~ o~~~ o~ o~ —~

insert into price values ('sparkplug', 10);
insert into price values ('screw', 2);
insert into price values ('gasket', 3);
(

insert into price values ('bolt', 2);
sub part(X,Y,Q,T) :- comp(X,Y,Q,T).
sub part(X,Y,Q,T) :- comp(Z,Y,Q2,T), sub part(X,Z,Q1,T1l),
Q is Q1 * Q2.
look for(P,Y,Q) :- sub part(P,Y,Q,b).
basic_comp (P,B, sum(<Q>)) :- look for(P,B,Q).
temp cost (P,X) :- basic comp(P,B,Q), price(B,C), X is Q * C.

cost (P, sum(<C>)) :- temp cost(P,C).

