
Chapter 8
SQL - The relational DB

Standard

SQL1: ANSI Standard 1986
SQL2: ANSI Standard 1992
SQL3: Recently being developed

Data Definition in SQL
Used to CREATE, DROP, and ALTER the
descriptions of the tables (relations) of a
database

CREATE TABLE:
Specifies a new base relation by giving it a
name, and specifying each of its attributes and
their data types (INTEGER, FLOAT, Number(i,j),
CHAR(n), VARCHAR2(n))
A constraint NOT NULL may be specified on an
attribute

Create Table (1)
CREATE TABLE DEPARTMENT

(DNAME VARCHAR2(10) NOT NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9));

In SQL2, can use the CREATE TABLE command for
specifying the primary key attributes, secondary
keys, and referential integrity constraints (foreign
keys)

Key attributes can be specified via the PRIMARY KEY and
UNIQUE phrases

Create Table (2)
CREATE TABLE DEPT

(DNAME VARCHAR2(10) NOT NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9),
PRIMARY KEY (DNUMBER),
UNIQUE (DNAME),
FOREIGN KEY (MGRSSN)

REFERENCES EMPLOYEE);

Drop Table
DROP TABLE:

- Used to remove a relation (base table) and its
definition

- The relation can no longer be used in queries,
updates, or any other commands since its
description no longer exists

Example:
DROP TABLE DEPENDENT;
DROP TABLE EMPLOYEE CASCADE
CONSTRAINTS;

Alter Table
ALTER TABLE:
Used to add an attribute to one of the base relations
The new attribute will have NULLs in all the tuples of
the relation right after the command is executed;
hence, the NOT NULL constraint is not allowed for
such an attribute

Example:
ALTER TABLE EMPLOYEE ADD JOB VARCHAR2(12);

The database users must still enter a value for the
new attribute JOB for each EMPLOYEE tuple. This can
be done using the UPDATE command.

Alter Table Drop Column:

ALTER TABLE employee
DROP address CASCADE;

Removes all views and referential integrity constraints
that refer to this column.

ALTER TABLE employee
DROP address RETSRICT;

Succeeds if no views or foreign keys refer to this
column.

Can also drop default clauses, change default values,
and drop column constraints.

Referential Integrity Options
In SQL2, we can specify

CASCADE
SET NULL
SET DEFAULT

on referential integrity constraints (foreign
keys)

Example
CREATE TABLE EMPLOYEE

(FNAME VARCHAR2(30) NOT NULL,
MINIT CHAR(1),
LNAME VARCHAR2(30),
SSN CHAR(9),
BDATE DATE,
ADDRESS VARCHAR2(100),
SEX CHAR(1) CHECK (SEX in (‘M’,F’)),
SALARY NUMBER(10,2),
SUPERSSN CHAR(9),
DNO INTEGER NOT NULL DEFAULT 1,
PRIMARY KEY (ESSN),
FOREIGN KEY (DNO) REFERENCES DEPT

ON DELETE SET DEFAULT
ON UPDATE CASCADE,

FOREIGN KEY (SUPERSSN) REFERENCES EMP
ON DELETE SET NULL
ON UPDATE CASCADE);

Retrieval Queries in SQL
SQL has one basic statement for retrieving information

from a database; the SELECT statement
- This is not the same as the SELECT operation of the

relational algebra
- Important distinction between SQL and the formal

relational model; SQL allows a table (relation) to have
two or more tuples that are identical in all their
attribute values

- Hence, an SQL relation (table) is a multi-set
(sometimes called a bag) of tuples; it is not a set of
tuples

- SQL relations can be constrained to be sets by
specifying PRIMARY KEY or UNIQUE attributes, or by
using the DISTINCT option in a query

SQL SELECT
Basic form of the SQL SELECT statement is called a
mapping or a SELECT-FROM-WHERE block
SELECT <attribute list>
FROM <table list>
WHERE <condition>

o <attribute list> is a list of attribute names whose
values are to be retrieved by the query

o <table list> is a list of the relation names required to
process the query

o <condition> is a conditional (Boolean) expression that
identifies the tuples to be retrieved by the query

Simple SQL Queries
Basic SQL queries correspond to using
the SELECT, PROJECT, and JOIN
operations of the relational algebra
All subsequent examples use the
COMPANY database
Example of a simple query on one
relation

Query 0
Retrieve the birthdate and address of
the employee whose name is 'John B.
Smith'.
SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME='John' AND

MINIT='B' AND
LNAME='Smith'

Query 0 (2)
Similar to a SELECT-PROJECT pair of
relational algebra operations; the
SELECT-clause specifies the projection
attributes and the WHERE-clause
specifies the selection condition

However, the result of the query may
contain duplicate tuples

Query 1
Retrieve the name and address of all
employees who work for the 'Research'
department.

SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research'
AND DNUMBER=DNO

Query 1 (2)
Similar to a SELECT-PROJECT-JOIN
sequence of relational algebra operations
(DNAME='Research') is a selection
condition (corresponds to a SELECT
operation in relational algebra)
(DNUMBER=DNO) is a join condition
(corresponds to a JOIN operation in
relational algebra)

Query 2
For every project located in 'Stafford', list the
project number, the controlling department
number, and the department manager's last
name, address, and bdate.

SELECT PNUMBER, DNUM, LNAME, BDATE,
ADDRESS

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND
PLOCATION='Stafford'

Query 2 (2)
In Q2, there are two join conditions
The join condition DNUM=DNUMBER
relates a project to its controlling
department
The join condition MGRSSN=SSN relates
the controlling department to the
employee who manages that department

Aliases, * and DISTINCT, Empty
WHERE-clause

In SQL, we can use the same name for two (or more)
attributes as long as the attributes are in different
relations
A query that refers to two or more attributes with the
same name must qualify the attribute name with the
relation name by prefixing the relation name to the
attribute name
Example: EMPLOYEE.LNAME,DEPARTMENT.DNAME

Some queries need to refer to the same relation twice, In
this case, aliases are given to the relation name

Query 8
For each employee, retrieve the
employee's name, and the name of his
or her immediate supervisor.

SELECT E.FNAME, E.LNAME,
S.FNAME, S.LNAME

FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

UNSPECIFIED WHERE-clause
A missing WHERE-clause indicates no
condition; hence, all tuples of the relations in
the FROM-clause are selected
This is equivalent to the condition WHERE
TRUE
Query 9: Retrieve the SSN values for all
employees.
SELECT SSN
FROM EMPLOYEE

UNSPECIFIED WHERE-clause
If more than one relation is specified in
the FROM-clause and there is no join
condition, then the CARTESIAN
PRODUCT of tuples is selected
Example:
SELECT SSN, DNAME
FROM EMPLOYEE, DEPARTMENT

USE OF *:
To retrieve all the attribute values of the
selected tuples, a * is used, which stands for
all the attributes
Examples:
SELECT *
FROM EMPLOYEE
WHERE DNO=5

SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNO=DNUMBER

USE OF DISTINCT
SQL does not treat a relation as a set
To eliminate duplicate tuples in a query
result, the keyword DISTINCT is used
For example,

Q11
SELECT SALARY
FROM EMPLOYEE

Q11A
SELECT DISTINCT SALARY
FROM EMPLOYEE

Set Operations
SQL has directly incorporated some set operations
There is a union operation (UNION), and in some
versions of SQL there are set difference (MINUS)
and intersection (INTERSECT) operations
The resulting relations of these set operations are
sets of tuples; duplicate tuples are eliminated from
the result
The set operations apply only to union compatible
relations ; the two relations must have the same
attributes and the attributes must appear in the
same order

Query 4
Make a list of all project numbers for projects that involve an
employee whose last name is 'Smith' as a worker or as a

manager of the department that controls the project.
(SELECT PNAME

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN AND

LNAME='Smith')
UNION
(SELECT PNAME
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER=PNO AND ESSN=SSN AND

LNAME='Smith')

NESTING OF QUERIES
A complete SELECT query, called a
nested query , can be specified within
the WHERE-clause of another query,
called the outer query
Many of the previous queries can be

specified in an alternative form using
nesting

Query 1
Retrieve the name and address of all
employees who work for the 'Research'
department.
SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT
WHERE DNAME='Research')

Query 1 (2)
The nested query selects the number of the 'Research'
department
The outer query select an EMPLOYEE tuple if its DNO
value is in the result of either nested query
The comparison operator IN compares a value v with
a set (or multi-set) of values V, and evaluates to TRUE
if v is one of the elements in V
A reference to an unqualified attribute refers to the
relation declared in the innermost nested query
In this example, the nested query is not correlated
with the outer query

CORRELATED NESTED QUERIES

If a condition in the WHERE-clause of a
nested query references an attribute of
a relation declared in the outer query ,
the two queries are said to be correlated
The result of a correlated nested query is
different for each tuple (or combination
of tuples) of the relation(s) the outer
query

Query 12
Retrieve the name of each employee who has a
dependent with the same first name as the
employee.

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN (SELECT ESSN

FROM DEPENDENT
WHERE ESSN=E.SSN AND
E.FNAME=DEPENDENT_NAME)

The EXISTS function
EXISTS is used to check whether the
result of a correlated nested query is
empty (contains no tuples) or not
We can formulate Query 12 in an

alternative form that uses EXISTS as
Q12B below

Query 12
Retrieve the name of each employee who has
a dependent with the same first name as the
employee.

Q12B:
SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN AND

FNAME=DEPENDENT_NAME)

Query 6
Retrieve the names of employees who
have no dependents

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN)

NULLS IN SQL QUERIES
SQL allows queries that check if a value is NULL
(missing or undefined or not applicable)
SQL uses IS or IS NOT to compare NULLs
because it considers each NULL value distinct
from other NULL values, so equality comparison
is not appropriate .

Retrieve the names of all employees who do not
have supervisors.

Q14: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE SUPERSSN IS NULL

Aggregate Functions
Include COUNT, SUM, MAX, MIN, and AVG
Q(15) Find the maximum salary, the minimum
salary, and the average salary among all
employees.

SELECT MAX(SALARY), MIN(SALARY),
AVG(SALARY)
FROM EMPLOYEE

Some SQL implementations may not allow
more than one function in the SELECT-clause

GROUPING
In many cases, we want to apply the
aggregate functions to subgroups of tuples in
a relation
Each subgroup of tuples consists of the set of
tuples that have the same value for the
grouping attribute(s)
The function is applied to each subgroup
independently
SQL has a GROUP BY-clause for specifying
the grouping attributes, which must also
appear in the SELECT-clause

Query 20
For each department, retrieve the
department number, the number of
employees in the department, and their
average salary.
SELECT DNO, COUNT (*), AVG
(SALARY)
FROM EMPLOYEE
GROUP BY DNO

Query 21
For each project, retrieve the project number,
project name, and the number of employees
who work on that project.
SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
In this case, the grouping and functions are
applied after the joining of the two relations

THE HAVING-CLAUSE
Sometimes we want to retrieve the
values of these functions for only those
groups that satisfy certain conditions
The HAVING-clause is used for
specifying a selection condition on
groups (rather than on individual
tuples)

Query 22
For each project on which more than two
employees work , retrieve the project
number, project name, and the number of
employees who work on that project.

SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT (*) > 2

SUBSTRING COMPARISON
The LIKE comparison operator is used
to compare partial strings
Two reserved characters are used: '%'
(or '*' in some implementations)
replaces an arbitrary number of
characters, and '_' replaces a single
arbitrary character

SUBSTRING COMPARISON (2)
Retrieve all employees whose address is in Houston,
Texas. (i.e.'Houston,TX‘)

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ADDRESS LIKE '%Houston,TX%'

Retrieve all employees who were born during the
1950s.

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE '_______5_'

The LIKE operator allows us to get around the fact
that each value is considered atomic and indivisible;
hence, in SQL, character string attribute values are
not atomic

ARITHMETIC OPERATIONS
The standard arithmetic operators '+', '-'. '*',
and '/' can be applied to numeric values in an
SQL query result
Show the effect of giving all employees who
work on the 'ProductX' project a 10% raise.

SELECT FNAME, LNAME, 1.1*SALARY
FROM EMPLOYEE, WORKS_ON,

PROJECT
WHERE SSN=ESSN AND

PNO=PNUMBER AND
PNAME='ProductX'

ORDER BY
Retrieve a list of employees and the projects each
works in, ordered by the employee's department, and
within each department ordered alphabetically by
employee last name.

SELECT DNAME, LNAME, FNAME, PNAME
FROM DEPARTMENT, EMPLOYEE, WORKS_ON,

PROJECT
WHERE DNUMBER=DNO AND

SSN=ESSN AND
PNO=PNUMBER

ORDER BY DNAME, LNAME

	Chapter 8 SQL - The relational DB Standard
	Data Definition in SQL
	Create Table (1)
	Create Table (2)
	Drop Table
	Alter Table
	Referential Integrity Options
	Example
	Retrieval Queries in SQL
	SQL SELECT
	Simple SQL Queries
	Query 0
	Query 0 (2)
	Query 1
	Query 1 (2)
	Query 2
	Query 2 (2)
	Aliases, * and DISTINCT, Empty WHERE-clause
	Query 8
	UNSPECIFIED WHERE-clause
	UNSPECIFIED WHERE-clause
	USE OF *:
	USE OF DISTINCT
	Set Operations
	Query 4
	NESTING OF QUERIES
	Query 1
	Query 1 (2)
	CORRELATED NESTED QUERIES
	Query 12
	The EXISTS function
	Query 12
	Query 6
	NULLS IN SQL QUERIES
	Aggregate Functions
	GROUPING
	Query 20
	Query 21
	THE HAVING-CLAUSE
	Query 22
	SUBSTRING COMPARISON
	SUBSTRING COMPARISON (2)
	ARITHMETIC OPERATIONS
	ORDER BY

