Relational Algebra

Set-theoretic operations:

attributes and the domains of the corresponding attributes in the two relations are the same Two relations are union-compatible if they have the same number of

Consider two relations r(R) and s(S) that are union-compatible (normally ${\sf R}={\sf S}$).

Union: $r \cup s = \{t | t \in r \text{ or } t \in s\}.$

Difference: $r - s = \{t | t \in r \text{ and } t \notin s\}$

Intersection: $r \cap s = \{t | t \in r \text{ and } t \in s\}$

Database Systems

Cartesian Product: r(R) and s(S) on any schemes R and S.

$$r \times s = \{t_1.t_2 | t_1 \in r \text{ and } t_2 \in s\},$$

where, t1.t2 is the concatenation of tuples t_1 and t_2 to form a larger tuple.

Example: set operations

a a A

AB

<u>а</u> с

۵

ന

 $r \times s$

0

 $\begin{array}{c|c} r \cap s \\ \hline a & c \\ \hline \end{array}$

A B

а

0

Ф

Ъ

d

ര

مه مه മ മ r A σ Б r.B Ь Q \circ \circ <u></u> Ъ s.A م ىھ ىھ ۵ ۵ ھ s.B ന $\boldsymbol{\sigma}$ \circ ര \circ \circ

Relation-theoretic operations

Consider r(R) and s(S), two relations, where $R=(A_1,...,A_n)$ and $S=(B_1,...,B_m)$

Rename: $r(C_1,...,C_n) = \{t | t \in r\}$ with schema $(C_1,...,C_n)$.

Select: $\sigma_F(r) = \{t | t \in r \text{ and } t \text{ satisfies } F\}.$

examples how F is constructed) where F is a selection criteria involving constants and attributes of r. (will discuss in

 $\begin{aligned} \mathbf{Project:} \qquad & \pi_{D_1,...,D_p}(r) = \{t[D_1,...,D_p] | t \in r\} \\ & \text{where } D_i \text{ is one of } A_1,...,A_n. \end{aligned}$

theta-Join: $r \bowtie_F s = \{t | (\exists u \in r) (\exists v \in s) (t = u.v \text{ and } F \text{ is satisfied by } u \text{ and } v) \}$ where F is a conjunction of formulas relating attributes of r with attributes of s. (will discuss in examples how F is constructed)

Natural Join: $r \bowtie s = \{t | (\exists u \in r) (\exists v \in s) (t[R] = u \text{ and } t[S] = v)\}$

Division: Assume $B_1,...,B_m\subset A_1,...,A_n$.

$$r \div s = \{t | (\forall u \in s)(t.u \in r)\}$$

Examples: relation-theoretic operations

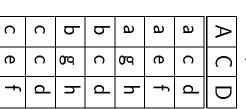
7.

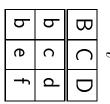
<u> </u>	С	b	b	а	a	а	Α
D	С	g	С	8	е	0)
Ť	d	h	d	h	f	р	D

$$\sigma_{A='b'}$$
 or $_{C='c'}(r)$

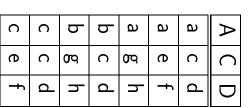
മ

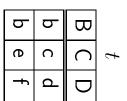
$$\pi_A(r)$$

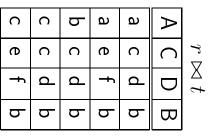


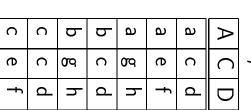


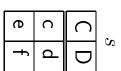
q	b	q	d	A	
ğ	g	С	С	C	7.
٩	h	р	р	D	$\bowtie_{r.A}$
d	Ь	d	q	В	
е	С	е	С	0	$=t.B \ t$
f	р	f	р	D	

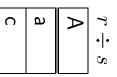












Basic Relational Algebra Operations

- Basic set: union, difference, Cartesian product, rename, select, and project.
- none of them can be expressed in terms of the others.
- Intersection, theta-join, natural join, and division can be expressed in terms of the basic operators as follows:

Intersection: $r \cap s = r - (r - s)$ theta Join: $r \bowtie_F s = \sigma_F(r \times s)$

Natural Join: $r \bowtie s = \pi_{R \cap S}(\sigma_F(r \times s))$

the common attributes of r and s are equal. where F is a selection condition which indicates that the tuple values under

Division: $r \div s = \pi_{R-S}(r) - \pi_{R-S}((\pi_{R-S}(r) \times s) - r)$

equalities for simplicity. Even though relation schemes are defined as sequences, they are treated as sets in these

Database Systems

An explanation for the equality for division is in order!

ullet First, all candidate tuples for the result are calculated by the expression

$$\pi_{R-S}(r)$$

 \bullet Next, these candidate tuples are combined with all tuples of s in the following expression

$$\pi_{R-S}(r) \times s$$

to give a relation containing all combinations of candidate tuples with all tuples of s.

• Since we are looking for tuples under the scheme R-S which combine with all tuples of s and are also present in r, if we subtract r from the previous expression, we will get all the combinations of tuples that are "missing" in r.

$$(\pi_{R-S}(r) \times s) - r$$

 \bullet By projecting these tuples on R-S, we get all those tuples that should not go to the result in the following expression.

$$\pi_{R-S}((\pi_{R-S}(r)\times s)-r)$$

• Finally, we subtract this set from the set of all candidate tuples and obtain the output relation of the division operator.

$$r \div s = \pi_{R-S}(r) - \pi_{R-S}((\pi_{R-S}(r) \times s) - r)$$