Relational Model

A relation scheme is a finite sequence of unique attribute names. For example,

EMPLOYEES = (EMPID, ENAME, ADDRESS, SALARY)

is a relation scheme with four attribute names.

- A domain is a set of values. With each attribute name, A, a domain, dom(A), is associated. This domain includes a special value called nullbetween 1000 and 9999 and the special null value For example, dom(EMPID) could be the set of all possible integers
- Given a relation scheme R = A1, ..., An, a relation r on the scheme R is defined as any finite subset of the Cartesian product $dom(A1) \times \ldots \times dom(An)$.

Assuming appropriate domains for the EMPLOYEES relation scheme, a sample relation under this scheme could be

```
{ (1111, 'Jones', '111 Ash St.', 20000),
(3333, 'Brown', '234 Oak St.', 30000) }
                                        (2222, 'Smith', '123 Elm St.', 25000),
```

- Each of the elements of a relation is also referred to as a tuple
- A relational database scheme, D, is a finite set of relation schemes,

{ R1, ..., Rm }.

A relational database on scheme D is a set of relations

{ r1, ... rm }

where each ri is a relation on the corresponding scheme Ri.

Key Constraint

- A super key for a relation scheme R is any subset, K of R that satisfies possible to have two different tuples with the same values under K. the property that in every valid relation under the scheme R, it is not
- A candidate key for R is any key for R such that none of its proper subsets is also a key.
- The primary key for a relation scheme R is one of the candidate keys chosen by the designer of the database.
- The primary key attributes are required to satisfy the not null attributes constraint, i.e., no tuple can have a null value under the primary key

Referential Integrity/Foreign Key Constraint

- During the design of a relational database, the designer may create a relation scheme, say S relation scheme R which includes the primary key attributes of another
- In such a situation, the referential integrity constraint specifies the under scheme S in any valid relation under scheme R must also appear in the relation condition that the values that appear under the primary key attributes
- scheme R The attributes in the scheme R that correspond to the primary key attributes of scheme S collectively are referred to as a foreign key in
- Unlike the primary key attributes, the foreign key attributes do not have to satisfy the **not null** constraint.

Not Null constraint

- This constraint specifies the condition that tuple values under certain attributes (specified to be not null) cannot be null.
- This condition is usually always imposed on the primary key attributes. not null. In Oracle, primary key attributes are automatically constrained to be
- Other attributes may also be constrained to be not null if the need arises

Grade book database

```
SCORES (SID, TERM, LINENO, COMPNAME, points)
                                 ENROLLS (SID, TERM, LINENO)
                                                                          COMPONENTS (TERM, LINENO, COMPNAME, maxpoints, weight)
                                                                                                           COURSES (TERM, LINENO, cno, a, b, c, d)
                                                                                                                                                    STUDENTS (SID, fname, lname, minit)
                                                                                                                                                                                             CATALOG(CNO,ctitle)
```

catalog

7	
CNO	CNO CTITLE
csc226	csc226 Introduction to Programming I
csc227	csc227 Introduction to Programming II
csc343	csc343 Assembly Programming
csc481	csc481 Automata and Formal Languages
csc498	csc498 Introduction to Database Systems
csc880	csc880 Deductive Databases and Logic Programming

students

SID	SID FNAME LNAME	LNAME	MINIT
1111	Nandita	1111 Nandita Rajshekhar K	K
2222	2222 Sydney	Corn	Α
3333	3333 Susan	Williams	В
4444	4444 Naveen	Rajshekhar B	В
5555 Elad	Elad	Yam	G
6666	6666 Lincoln	Herring	H

courses

TERM	TERM LINENO CNC	CNO	A B		\bigcirc	D
96f	1031	$ \csc 226 90 80 65 50$	06	08	65	50
f96	1032	$ \csc 226 90 80 65 50$	06	08	65	50
sp97	1031	$ \csc 227 90 80 65 50$	06	08	65	50

components

TERM	LINENO	COMPNAME	TERM LINENO COMPNAME MAXPOINTS WI	WEIGHT
96J	1031	exam1	100	30
96f	1031	quizzes	80	20
f96	1031	final	100	50
96f	1032	programs	400	40
96f	1032	midterm	100	20
96f	1032	final	100	40
sp97	1031	paper	100	50
sp97	1031	project	100	50

enrolls

SID	TERM	LINENO
	f96	1031
2222	f96	1031
4444	f96	1031
1111	f96	1032
2222	f96	1032
3333	f96	1032
5555	sp97	1031
9999	sp97	1031

scores

SID	TERM	LINENO	TERM LINENO COMPNAME POINTS	POINTS
1111 f96	f96	1031	exam1	90
1111	f96	1031	quizzes	75
1111	f96	1031	final	95
2222	f96	1031	exam1	70
2222	f96	1031	quizzes	40
2222	f96	1031	final	82
4444	f96	1031	exam1	83
4444	f96	1031	quizzes	71
4444	f96	1031	final	74

<u>Mail order database</u>

```
CUSTOMERS(CNO, cname, street, zip, phone)
ORDERS(ONO, CNO, ENO, received, shipped)
ODETAILS(ONO, PNO, qty)
ZIPCODES(ZIP, city)
                                                                                                                                PARTS(PNO, pname, qoh, price, level)
                                                                                                                                                                    EMPLOYEES(ENO, ename, zip, hdate)
```

employees

ENO	ENO ENAME ZIP	ZIP	HDATE
1000	1000 Jones	67226	67226 12-DEC-95
1001	Smith	90909	60606 01-JAN-92
1002	Brown	50302	50302 01-SEP-94

parts

PNO	PNO PNAME	QOH	QOH PRICE LEVEL	LEVEL
10506	10506 Land Before Time I	200	19.99	20
10507	10507 Land Before Time II	156	19.99	20
10508	10508 Land Before Time III	190	19.99	20
10509	10509 Land Before Time IV	60	19.99	20
10601	10601 Sleeping Beauty	300	24.99	20
10701	10701 When Harry Met Sally 120	120	19.99	30
10800	10800 Dirty Harry	140	14.99	30
10900	10900 Dr. Zhivago	100	24.99	30

customers

		-1		
60606 316-111-1234	60606	3333 Barbara 111 Inwood St.	Barbara	3333
316-689-5555	67226	2222 Bertram 237 Ash Avenue 67226 316-689-5555	Bertram	2222
67226 316-636-5555	67226	123 Main St.	1111 Charles	1111
PHONE	ZIP	STREET	CNO CNAME STREET	CNO

orders

null	70-JUN-97	1000	3333	1023
20-FEB-95	13-FEB-95	1001	2222	1022
15-JAN-95	12-JAN-95		1111 1000	1021
12-DEC-94	1111 1000 10-DEC-94	1000	1111	1020
SHIPPED	ONO CNO ENO RECEIVED SHIPPED	ENO	CNO	ONO

odetails ONO PNO QTY 1020 10506 1 1020 10507 1 1020 10508 2 1020 10509 3 1021 10601 4 1022 10701 1 1023 10800 1	1	10900	1023
odetails NO PNO 20 10506 20 10507 20 10508 20 10509 21 10601 22 10601 22 10701	1	10800	1023
odetails NO PNO 20 10506 20 10507 20 10508 20 10509 21 10601 22 10601	1	10701	1022
odetails NO PNO 20 10506 20 10507 20 10508 20 10509 21 10601	1	10601	1022
odetails NO PNO 20 10506 20 10507 20 10508 20 10508	4	10601	1021
odetails NO PNO 20 10506 20 10507 20 10508	3	10509	1020
NO 20 20	2	80501	1020
	1	10507	1020
_	<u> </u>	10506	1020
odetails	QTY	PNO	ONO
		odetails	(

zipcodes

ZIP	CITY
67226	Wichita
60606	Fort Dodge
50302	Kansas City
54444	Columbia
66002	Liberal
61111	Fort Hays

Relational Algebra - Set-theoretic operations

- Two relations are **union-compatible** if they have the same number two relations are the same. of attributes and the domains of the corresponding attributes in the
- Consider two relations r and s that are union-compatible.

Union: $r \cup s = \{t | t \in r \text{ or } t \in s\}$. Difference: $r - s = \{t | t \in r \text{ and } t \notin s\}$ Intersection: $r \cap s = \{t | t \in r \text{ and } t \in s\}$

Cartesian Product: Let r and s be any two relations

$$r \times s = \{t1.t2 | t1 \in r \text{ and } t2 \in s\},\$$

tuple. where, t1.t2 is the concatenation of tuples t1 and t2 to form a larger

Example: Set-theoretic Operators

 $r \times s$

ත ಶು ත ಶ ಶ ත ಶ r.A ත r.B s.A \bigcirc \bigcirc 6 ත ಶ ಶ ත ಶ ಶ s.B \circ \bigcirc 0 \bigcirc Θ \bigcirc

Relation-theoretic operations

Rename: The rename operator takes as input a relation and returns the same relation as output, but under a different name. The symbolic and s is the new name. notation for the rename operator is $\rho_s(r)$, where r is the input relation

Select: Symbolically, the select operator is written as $\sigma_F(r)$, where F is the selection criterion and r is the input relation and is defined as follows:

$$\sigma_F(r) = \{t | t \in r \text{ and } t \text{ satisfies } F\}.$$

Project: Symbolically, the project operator is written as $\pi_A(r)$, where A is a sub-list of the attributes of r, and is defined as follows:

$$\pi_A(r) = \{t[A] | t \in r\}$$

correspond to the attributes in A and discarding other values where t[A] is a tuple constructed from t by keeping the values that

Relation-theoretic operations - Continued

Natural Join: Symbolically, the natural join is written as $r \bowtie s$, where r defined as follows: is a relation on scheme R and s is a relation on scheme S, and is

$$r \bowtie s = \{t | (\exists u \in r)(\exists v \in s)(t[R] = u \text{ and } t[S] = v)\}$$

Division: Symbolically, the division operation is written as $r \div s$ and is defined as follows:

$$r \div s = \{t | (\forall u \in s)(t.u \in r)\}$$

where t.u is the concatenation of tuple t with tuple u.

Example: Relation-theoretic operations

A C A C D a c d b c d b c d D C c d b f d b c d

			1
е	С	\bigcirc	s
f	d	D	53

О	С	b	a	а	Α
Э	О	О	е	О	\bigcirc
J	p	p	f	p	D
d	b	b	b	d	В

С	а	Α

 $r \div s$

Basic Operations

Basic set of operations: rename, select, project, cartesian product, union, difference. Other operations can be expressed in terms of these

Intersection: $r \cap s = r - (r - s)$

Natural Join: $r \bowtie s = \pi_{R \cap S}(\sigma_F(r \times s))$

where F is a selection condition which indicates that the tuple values under the common attributes of r and s are equal.

Division: $r \div s = \pi_{R-S}(r) - \pi_{R-S}((\pi_{R-S}(r) \times s) - r)$

Even though relation schemes are defined as sequences, they are treated as sets in these equalities for simplicity.

Querying using relational algebra

Gradebook database queries

Q1 Get the names of students enrolled in the Assembly Programming class in the f96 term.

$$t1 := \sigma_{CTITLE='}$$
Assembly Programming'(catalog)
 $t2 := \sigma_{TERM='f96'}(courses)$
 $t3 := t1 \bowtie t2 \bowtie enrolls \bowtie students$

Q2 Get the SID values of students who did not enroll in any class during the f96 term.

 $result := \pi_{FNAME,LNAME,MINIT}(t3)$

$$\pi_{SID}(students) - \pi_{SID}(\sigma_{TERM='f96'}(enrolls))$$

Gradebook database queries continued

Q3 Get the SID values of students who have enrolled in csc226 and

$$t1 := \pi_{SID}(enrolls \bowtie \sigma_{CNO='csc226'}(courses))$$

$$t2 := \pi_{SID}(enrolls \bowtie \sigma_{CNO='csc227'}(courses))$$

 $result := t1 \cap t2$

Q4 Get the **SID** values of students who have enrolled in csc226 or csc227,

$$t1 := \pi_{SID}(enrolls \bowtie \sigma_{CNO='csc226'}(courses))$$

 $t2 := \pi_{SID}(enrolls \bowtie \sigma_{CNO='csc227'}(courses))$

$$result := t1 \cup t2$$

Q5 Get the **SID** values of students who have enrolled in **all** the courses in the catalog.

$$\pi_{SID,CNO}(courses \bowtie enrolls) \div \pi_{CNO}(catalog)$$

Mail order database queries

Q6 Get part names of parts that cost less than 20.00

$$\pi_{PNAME}(\sigma_{PRICE < 20.00}(parts))$$

Q7 Get pairs of CNO values of customers who have the the same zipcode

$$t1 := \rho_{c1}(customers) \times \rho_{c2}(customers)$$

 $t2 := \sigma_{c1.ZIP=c2.ZIP} \text{ and } c_{1.CNO < c2.CNO}(t1)$
 $result := \pi_{c1.CNO,c2.CNO}(t2)$

Q8 Get the names of customers who have ordered parts from employees living in Wichita

$$t1 := \pi_{ENO}(employees \bowtie \sigma_{CITY='Wichita'}(zipcodes))$$

 $result := \pi_{CNAME}(customers \bowtie orders \bowtie t1)$

Mailorder database queries continued

Q9 Get CNO values of customers who have ordered parts only from employees living in Wichita.

 $result := \pi_{CNO}(orders) - \pi_{CNO}(orders \bowtie t1))$ $t1 := \pi_{ENO}(employees \bowtie \sigma_{CITY \neq 'Wichita'}(zipcodes))$

Q10 Get CNO values of customers who have ordered parts from all employees living in Wichita

 $result := \pi_{CNO,ENO}(orders) \div t1$ $t1 := \pi_{ENO}(employees \bowtie \sigma_{CITY='Wichita'}(zipcodes))$