DATABASE SYSTEMS

Dr. Raj Sunderraman

Department of Mathematics and Computer Science Georgia State University

January 29, 1999

Database Systems

Ch 3. Entity-Relationship Model

Database Design Process:

use a high-level conceptual data model (ER Model).

Figure 3.1

An Example: Company database

- company organized into DEPARTMENTs. Department may have several locations who manages the department. Start date for the manager is recorded. each department has unique name and a particular employee
- A department controls a number of PROJECTs projects have a unique name, number and a single location
- We store each EMPLOYEEs name, ssno, address, salary, sex and We record number of hours/week worked on each project; work for several projects (not necessarily controlled by her dept.) birthdate. An employee is assigned to one department, but may also record the immediate supervisor for the employee
- We want to keep track of DEPENDENTs of employees for health insurance purposes (dependent name, birthdate, relationship to employee)

ER Model Concepts

- Entities and Attributes (Figure 3.3)
- Attribute types: Single-valued vs Multi-valued (e.g. Locations for DEPARTMENT) Stored vs Derived (e.g. NumberOfEmployees for DEPARTMENT) Simple vs Composite (Figure 3.4)
- Null values for attributes: Not applicable, Unknown (Missing; not known if applicable)

Entity Types, Value Sets, Key Attributes attributes. Figure 3.5 An entity type defines a set of entities that have the

Rectangular box in ER Diagram denotes Entity Types

Ovals denote Attributes (double-ovals: multi-valued

attribute; tree structured ovals: composite attribute)

Entity Set = Set of all entities of the same type

Key Attributes: uniquely identify each entity within an entity (these are underlined in the ER Diagram)

Value Sets: or Domains for attributes.

A: E -> P(V) A:attribute, E:Entity set, V: Value set

A(e) denotes the value of attribute A for entity e $V = P(V1) \times ... \times P(Vn)$ for composite attributes

Figure 3.7: Example of an attribute with specific notation

Figure 3.8 gives an initial design of the COMPANY DATABASE

4 entity types:

DEPARTMENT
EMPLOYEE
PROJECT
DEPENDENT

between entities as attributes (in general not a good idea) Not a perfect design! because it captures relationships

Relationships, Roles, Structural Constraints

- Relationship type: R among n Entity types E1, ..., En ex. Works_FOR relationship in Figure 3.9 each association will be denoted as: defines a set of associations among entities from these types (e1, ..., en) where ei belongs to Ei, 1 <= i ← n.
- Degree of relationship = n (usually n = 2, binary relationship)
- Ternary relationship: Figure 3.10
- Relationships as attributes (e.g. Dept -- Empl relationship Empl) can be viewed as two attributes one in Dept. and the other in

Role names

Each entity participating in a relationship has a ROLE. e.g. Employee plays the role of worker and Department plays the role of employer in the WORKS_FOR relationship type

Role names are more important in recursive relationships ex. Figure 3.11

Structural Constraints on Relationships

2 types:

- Cardinality Ratio Constraint (1-1, 1-N, M-N)
- Participation Constraint
- * total participation (existence dependency)
- * partial participation

Figure 3.12

In ER Diagram total participation is denoted by double line Cardinality ratios are mentioned as labels of edges and partial participation by single line

Attributes of relationships:

Hours attribute for WORKS_ON relationship

if relationship is 1-N or 1-1, these attributes relationship. be migrated to the entity sets involved in the can be

1-N: migrate to N side

1-1: migrate to either side

Weak Entity Types:

Entity Types that do not have key attributes.

Such entities are identified by being related to other entity sets called identifying owner. This relationship is called identifying relationship.

Partial key: attributes that uniquely identify entities within the identifying relationship.

A weak entity type always has TOTAL participation.

Ex. DEPENDENT is a weak entity type.

Notation for ER Diagrams:

Fig 3.14, 3.15

This is more general than previous notation. (Min, Max) notation encapsulates both types of structural constraints.

Min >=1 implies TOTAL participation
Min = 0 implies PARTIAL participation

Relationship types with degree ¿ 2

Figure 3.16 (a), (b) represent slightly different information.

Figure 3.16 (c) in situations where only binary relationships are allowed.

Figure 3.17

Figure 3.18

Dr. Raj Sunderraman

12