DATABASE SYSTEMS

Dr. Raj Sunderraman

Department of Mathematics and Computer Science Georgia State University

January 29, 1999

Ch 1. Databases and Database Users

- Database: a collection of data with the following properties
- (a) it represents some aspect of the real world; changes to the real world are reflected in the database
- (b) logically coherent collection of data (inter-related)
- (c) it is designed, built and populated with data for a specific purpose (intended users and applications)
- (d) typically large in size
- ullet Database Management System (DBMS): collection of programs that enables users to create and maintain a database. Activities: Defining the database (structure), applications, updates) Constructing the database (populating), Manipulating the database (query,
- Figure 1.1
- Figure 1.2

Database Approach vs. Traditional File Processing

- Self contained nature of database systems (database contains both data and meta-data)
- Data Independence: application programs and queries are independent of how data is actually stored. (Figure 1.3 add Birthdate)
- Data sharing.
- Controlling redundancies and inconsistencies.
- Secure access to database; Restricting unauthorized access.
- Enforcing Integrity Constraints.
- Backup and Recovery from system crashes.
- Support for multiple-users and concurrent access (data sharing).
- Support for multiple views of data (Figure 1.4)

Actors on the scene

- Database Administrator (DBA)
- Database Designers
- End Users:

Stand-alone users (personal db, single user, ex. tax package) Sophisticated end users (engineers, scientists, analysts) Naive (or parametric end users) (bank tellers/clerks) Casual users (managers using SQL)

System Analysts and Application Programmers

Workers behind the Scene

- DBMS designers and implementors
- Tool developers
- System administrators

ntended uses of a DBMS

- -- Controlling redundancy (Figure 1.5)
- -- Restricting unauthorized access
- -- Persistent storage of program objects and data
- Deductive inferences of data
- -- Multiple user interfaces (SQL, C-SQL, Forms, Menus, Web)
- -- Complex relationships among data (1-many, many-many, 1-1)
- Enforcing integrity constraints
- Backup and recovery

Implications of Database approach

- potential for enforcing standards (naming/formatting convention, display formats, report structures)
- reduced application development time (once database is up and runging)
- flexibility (changing database structure)
- -- Up-to-date information (e.g. airline reservations)
- Economies of scale (invest in one server, centralized database)

Data Models, Schemas, Instances

Data Model: set of concepts used to describe the structure a set of operations for specifying updates and queries of a database (abstraction tool); It may also include

- High-level or Conceptual Data Model (ER)
- Representational or Implementation Data Model Relational, Object-Oriented, Deductive, Hierarchical, Network (Record-based; Value-based/object-based)
- Low-level or Physical Data Model (access paths)

Database Systems

Database Schema vs Database Instance

Schemas (Intension) and Instances (Extension)

Figure 2.1 Schema: structure (meta-data; schema diagram; schema constructs)

Instances: actual data (occurrences or instances) database state

Database Systems

2.2 DBMS Architecture and Data Independence

Figure 2.2

Internal Level (physical structure)
Conceptual Level (logical structure)
External Level (Views)

mappings: from one level to another

Data Independence:

Logical Data Independence: ability to change conceptual application programs schema without having to change external views or

Physical Data Independence: ability to change internal schema without having to change conceptual or external schema.

Database Systems

2.3 Database Languages and Interfaces

```
DBMS Languages: DDL (for conceptual level)
                                     User Interfaces (Menu-based, GUI, Forms-based,
                                                                                                                                                                                                                                                  DML (for queries and manipulation)
                                                                                                                                                                                                                                                                                                                     SDL (Storage) and VDL (Views) when three
                                                                                                                                                                                                                                                                                   levels are separated by system

    Query Language (non-procedural/declarative)

                                                                                                                                             procedural DML
Natural-language))
                                                                                                           record at a time
                                                                                                                                                                               set at a time
                                                                    host language (embedding)
```

2.4 Database System Environment Database Systems Figure 2.3

Classification of DBMS

- Based on Data Model Relational, Network, Hierarchical, Object-Oriented, Others
- Based on number of users Single-user, Multi-user
- Based on number of sites Centralized, Distributed (Homogenous/Heterogenous)