- (B.A., B.S., ..., Ph.D.). Some user applications need to refer to the city, state, and ZIP Code of the student's permanent address and to the student's last name. Both Social Security number and student number have unique values for each student. - b. Each department is described by a name, department code, office number, office phone number, and college. Both name and code have unique values for each department. - c. Each course has a course name, description, course number, number of semester hours, level, and offering department. The value of the course number is unique for each course. - d. Each section has an instructor, semester, year, course, and section number. The section number distinguishes sections of the same course that are taught during the same semester/year; its values are 1, 2, 3, ..., up to the number of sections taught during each semester. - e. A grade report has a student, section, letter grade, and numeric grade (0, 1, 2, 3, or 4). Design an ER schema for this application, and draw an ER diagram for the schema. Specify key attributes of each entity type, and structural constraints on each relationship type. Note any unspecified requirements, and make appropriate assumptions to make the specification complete. - Composite and multivalued attributes can be nested to any number of levels. Suppose we want to design an attribute for a STUDENT entity type to keep track of previous college education. Such an attribute will have one entry for each college previously attended, and each such entry will be composed of college name, start and end dates, degree entries (degrees awarded at that college, if any), and transcript entries (courses completed at that college, if any). Each degree entry contains the degree name and the month and year the degree was awarded, and each transcript entry contains a course name, semester, year, and grade. Design an attribute to hold this information. Use the conventions in Figure 7.5. - **7.18.** Show an alternative design for the attribute described in Exercise 7.17 that uses only entity types (including weak entity types, if needed) and relationship types. - 7.19. Consider the ER diagram in Figure 7.20, which shows a simplified schema for an airline reservations system. Extract from the ER diagram the requirements and constraints that produced this schema. Try to be as precise as possible in your requirements and constraints specification. - 7.20. In Chapters 1 and 2, we discussed the database environment and database users. We can consider many entity types to describe such an environment, such as DBMS, stored database, DBA, and catalog/data dictionary. Try to specify all the entity types that can fully describe a database system and its environment; then specify the relationship types among them, and draw an ER diagram to describe such a general database environment. - Each part sold by the company is identified by a unique part number, a part name, price, and quantity in stock. - Each order placed by a customer is taken by an employee and is given a unique order number. Each order contains specified quantities of one or more parts. Each order has a date of receipt as well as an expected ship date. The actual ship date is also recorded. Design an Entity-Relationship diagram for the mail order database and build the design using a data modeling tool such as ERwin or Rational Rose. - **7.33.** Consider a MOVIE database in which data is recorded about the movie industry. The data requirements are summarized as follows: - Each movie is identified by title and year of release. Each movie has a length in minutes. Each has a production company, and each is classified under one or more genres (such as horror, action, drama, and so forth). Each movie has one or more directors and one or more actors appear in it. Each movie also has a plot outline. Finally, each movie has zero or more quotable quotes, each of which is spoken by a particular actor appearing in the movie. - Actors are identified by name and date of birth and appear in one or more movies. Each actor has a role in the movie. - Directors are also identified by name and date of birth and direct one or more movies. It is possible for a director to act in a movie (including one that he or she may also direct). - Production companies are identified by name and each has an address. A production company produces one or more movies. Design an Entity-Relationship diagram for the movie database and enter the design using a data modeling tool such as ERwin or Rational Rose. (7.34) Consider a CONFERENCE_REVIEW database in which researchers submit their research papers for consideration. Reviews by reviewers are recorded for use in the paper selection process. The database system caters primarily to reviewers who record answers to evaluation questions for each paper they review and make recommendations regarding whether to accept or reject the paper. The data requirements are summarized as follows: - Authors of papers are uniquely identified by e-mail id. First and last names are also recorded. - Each paper is assigned a unique identifier by the system and is described by a title, abstract, and the name of the electronic file containing the paper. - A paper may have multiple authors, but one of the authors is designated as the contact author. - Reviewers of papers are uniquely identified by e-mail address. Each reviewer's first name, last name, phone number, affiliation, and topics of interest are also recorded. - Each paper is assigned between two and four reviewers. A reviewer rates each paper assigned to him or her on a scale of 1 to 10 in four categories: technical merit, readability, originality, and relevance to the conference. Finally, each reviewer provides an overall recommendation regarding each paper. - Each review contains two types of written comments: one to be seen by the review committee only and the other as feedback to the author(s). Design an Entity-Relationship diagram for the CONFERENCE_REVIEW database and build the design using a data modeling tool such as ERwin or Rational Rose. 7.35. Consider the ER diagram for the AIRLINE database shown in Figure 7.20. Build this design using a data modeling tool such as ERwin or Rational Rose. ## Selected Bibliography The Entity-Relationship model was introduced by Chen (1976), and related work appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and Senko (1975). Since then, numerous modifications to the ER model have been suggested. We have incorporated some of these in our presentation. Structural constraints on relationships are discussed in Abrial (1974), Elmasri and Wiederhold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attributes are incorporated in the ER model in Elmasri et al. (1985). Although we did not discuss languages for the ER model and its extensions, there have been several proposals for such languages. Elmasri and Wiederhold (1981) proposed the GORDAS query language for the ER model. Another ER query language was proposed by Markowitz and Raz (1983). Senko (1980) presented a query language for Senko's DIAM model. A formal set of operations called the ER algebra was presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) presented another formal language for the ER model. Campbell et al. (1985) presented a set of ER operations and showed that they are relationally complete. A conference for the dissemination of research results related to the ER model has been held regularly since 1979. The conference, now known as the International Conference on Conceptual Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997), Washington, D.C. (ER 1981), Chicago (ER 1985), Dijon, France (ER 1986), New York City (ER 1987), Rome (ER 1988), Toronto (ER 1989), Lausanne, Switzerland (ER 1990), San Mateo, California (ER 1991), Karlsruhe, Germany (ER 1992), Arlington, Texas (ER 1993), Manchester, England (ER 1994), Brisbane, Australia (ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998), Paris, France (ER 1999), Salt Lake City, Utah (ER 2000), Yokohama, Japan (ER 2001), Tampere, Finland (ER 2002), Chicago, Illinois (ER 2003), Shanghai, China (ER 2004), Klagenfurt, Austria (ER 2005), Tucson, Arizona (ER 2006), Auckland, New Zealand (ER 2007), Barcelona, Catalonia, Spain (ER 2008), and Gramado, RS, Brazil (ER 2009). The 2010 conference is to be held in Vancouver, BC, Canada.