Chapter 8
The Enhanced Entity-Relationship (EER) Model
Chapter 8 Outline

- Subclasses, Superclasses, and Inheritance
- Specialization and Generalization
- Constraints and Characteristics of Specialization and Generalization Hierarchies
- Modeling of UNION Types Using Categories
Chapter 8 Outline (cont’d.)

- A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions
- Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams
- Data Abstraction, Knowledge Representation, and Ontology Concepts
The Enhanced Entity-Relationship (EER) Model

- **Enhanced ER (EER) model**
 - Created to design more accurate database schemas
 - Reflect the data properties and constraints more precisely
 - More complex requirements than traditional applications
Subclasses, Superclasses, and Inheritance

- EER model includes all modeling concepts of the ER model
- In addition, EER includes:
 - Subclasses and superclasses
 - Specialization and generalization
 - Category or union type
 - Attribute and relationship inheritance
Subclasses, Superclasses, and Inheritance (cont’d.)

- **Enhanced ER or EER diagrams**
 - Diagrammatic technique for displaying these concepts in an EER schema

- **Subtype or subclass** of an entity type
 - Subgroupings of entities that are meaningful
 - Represented explicitly because of their significance to the database application
Subclasses, Superclasses, and Inheritance (cont’d.)

- Terms for relationship between a superclass and any one of its subclasses
 - Superclass/subclass
 - Supertype/subtype
 - Class/subclass relationship

- Type inheritance
 - Subclass entity inherits all attributes and relationships of superclass
Figure 8.1
EER diagram notation to represent subclasses and specialization.

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}
Specialization and Generalization

- **Specialization**
 - Process of defining a set of subclasses of an entity type
 - Defined on the basis of some distinguishing characteristic of the entities in the superclass

- Subclass can define:
 - Specific attributes
 - Specific relationship types
Figure 8.2
Instances of a specialization.
Specialization and Generalization (cont’d.)

- Certain attributes may apply to some but not all entities of the superclass
- Some relationship types may be participated in only by members of the subclass
Generalization

- Reverse process of abstraction
- **Generalize** into a single **superclass**
 - Original entity types are special subclasses
- Generalization
 - Process of defining a generalized entity type from the given entity types
Constraints and Characteristics of Specialization and Generalization Hierarchies

- Constraints that apply to a single specialization or a single generalization
- Differences between specialization/generalization lattices and hierarchies
Constraints on Specialization and Generalization

- May be several or one subclass
- Determine entity subtype:
 - **Predicate-defined** (or **condition-defined**) subclasses
 - Attribute-defined specialization
 - User-defined
Constraints on Specialization and Generalization (cont’d.)

- **Disjointness constraint**
 - Specifies that the subclasses of the specialization must be disjoint

- **Completeness (or totalness) constraint**
 - May be **total** or **partial**

- Disjointness and completeness constraints are independent
Specialization and Generalization Hierarchies and Lattices

- **Specialization hierarchy**
 - Every subclass participates as a subclass in only one class/subclass relationship
 - Results in a **tree structure** or **strict hierarchy**

- **Specialization lattice**
 - Subclass can be a subclass in more than one class/subclass relationship
Figure 8.7
A specialization lattice with multiple inheritance for a UNIVERSITY database.
Specialization and Generalization Hierarchies and Lattices (cont’d.)

- **Multiple inheritance**
 - Subclass with more than one superclass
 - If attribute (or relationship) originating in the same superclass inherited more than once via different paths in lattice
 - Included only once in shared subclass

- **Single inheritance**
 - Some models and languages limited to single inheritance
Utilizing Specialization and Generalization in Refining Conceptual Schemas

- **Specialization process**
 - Start with entity type then define subclasses by successive specialization
 - Top-down conceptual refinement process

- **Bottom-up conceptual synthesis**
 - Involves generalization rather than specialization
Modeling of UNION Types Using Categories

- **Union type** or a **category**
- Represents a single superclass/subclass relationship with more than one superclass
- Subclass represents a collection of objects that is a subset of the UNION of distinct entity types
- Attribute inheritance works more selectively
- Category can be **total** or **partial**
- Some modeling methodologies do not have union types
A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions

- The UNIVERSITY Database Example
 - UNIVERSITY database
 - Students and their majors
 - Transcripts, and registration
 - University’s course offerings
Figure 8.9
An EER conceptual schema for a UNIVERSITY database.
Design Choices for Specialization/Generalization

- Many specializations and subclasses can be defined to make the conceptual model accurate
- If subclass has few specific attributes and no specific relationships
 - Can be merged into the superclass
Design Choices for Specialization/Generalization (cont’d.)

- If all the subclasses of a specialization/generalization have few specific attributes and no specific relationships
 - Can be merged into the superclass
 - Replace with one or more type attributes that specify the subclass or subclasses that each entity belongs to
Design Choices for Specialization/Generalization (cont’d.)

- Union types and categories should generally be avoided
- Choice of disjoint/overlapping and total/partial constraints on specialization/generalization
 - Driven by rules in miniworld being modeled
Formal Definitions for the EER Model Concepts

- **Class**
 - Set or collection of entities
 - Includes any of the EER schema constructs of group entities

- **Subclass**
 - Class whose entities must always be a subset of the entities in another class

- **Specialization**
 - Set of subclasses that have same superclass
Formal Definitions for the EER Model Concepts (cont’d.)

- **Generalization**
 - Generalized entity type or superclass

- **Predicate-defined**
 - Predicate on the attributes of is used to specify which entities in C are members of S

- **User-defined**
 - Subclass that is not defined by a predicate
Formal Definitions for the EER Model Concepts (cont’d.)

- **Category**
 - Class that is a subset of the union of n defining superclasses

- **Relationship type**
 - Any class can participate in a relationship
Example of Other Notation

- Representing specialization and generalization in UML class diagrams
 - Basic notation
 - See Figure 8.10
 - Base class
 - Root superclass
 - Leaf classes
 - Subclasses (leaf nodes)
Figure 8.10
A UML class diagram corresponding to the EER diagram in Figure 8.7, illustrating UML notation for specialization/generalization.
Data Abstraction, Knowledge Representation, and Ontology Concepts

- Goal of **knowledge representation (KR)** techniques
 - Accurately model some **domain of knowledge**
 - Create an **ontology** that describes the concepts of the domain and how these concepts are interrelated

- Goals of KR are similar to those of semantic data models
 - Important similarities and differences
Classification and Instantiation

- **Classification**
 - Systematically assigning similar objects/entities to object classes/entity types

- **Instantiation**
 - Inverse of classification
 - Generation and specific examination of distinct objects of a class
Classification and Instantiation (cont’d.)

- Exception objects
 - Differ in some respects from other objects of class
 - KR schemes allow such class properties

- One class can be an instance of another class (called a meta-class)
 - Cannot be represented directly in EER model
Identification

- Abstraction process
- Classes and objects are made uniquely identifiable by means of some **identifier**
- Needed at two levels
 - To distinguish among database objects and classes
 - To identify database objects and to relate them to their real-world counterparts
Specialization and Generalization

- **Specialization**
 - Classify a class of objects into more specialized subclasses

- **Generalization**
 - Generalize several classes into a higher-level abstract class
 - Includes the objects in all these classes
Aggregation and Association

- **Aggregation**
 - Abstraction concept for building composite objects from their component objects

- **Association**
 -Associate objects from several independent classes

- **Main structural distinction**
 - When an association instance is deleted
 - Participating objects may continue to exist
Figure 8.11
Aggregation. (a) The relationship type INTERVIEW. (b) Including JOB_OFFER in a ternary relationship type (incorrect). (c) Having the RESULTS_IN relationship participate in other relationships (not allowed in ER). (d) Using aggregation and a composite (molecular) object (generally not allowed in ER but allowed by some modeling tools). (e) Correct representation in ER.
Figure 8.11
Aggregation. (a) The relationship type INTERVIEW, (b) Including JOB_OFFER in a ternary relationship type (incorrect). (c) Having the RESULTS_IN relationship participate in other relationships (not allowed in ER). (d) Using aggregation and a composite (molecular) object (generally not allowed in ER but allowed by some modeling tools). (e) Correct representation in ER.
Ontologies and the Semantic Web

- Documents contain less structure than database information does

Semantic Web
- Allow meaningful information exchange and search among machines

Ontology
- Specification of a conceptualization

Specification
- Language and vocabulary terms used to specify conceptualization
Summary

- Enhanced ER or EER model
 - Extensions to ER model that improve its representational capabilities
 - Subclass and its superclass
 - Category or union type
- Notation and terminology of UML for representing specialization and generalization