Chapter 3

The Relational Data Model and Relational Database Constraints
Chapter 3 Outline

- The Relational Data Model and Relational Database Constraints
- Relational Model Constraints and Relational Database Schemas
- Update Operations, Transactions, and Dealing with Constraint Violations
The Relational Data Model and Relational Database Constraints

- Relational model
 - First commercial implementations available in early 1980s
 - Has been implemented in a large number of commercial system

- Hierarchical and network models
 - Preceded the relational model
Relational Model Concepts

- Represents data as a collection of relations
- **Table** of values
 - Row
 - Represents a collection of related data values
 - Fact that typically corresponds to a real-world entity or relationship
 - *Tuple*
 - Table name and column names
 - Interpret the meaning of the values in each row *attribute*
Figure 3.1
The attributes and tuples of a relation STUDENT.
Domains, Attributes, Tuples, and Relations

- **Domain** D
 - Set of atomic values

- **Atomic**
 - Each value indivisible

- **Specifying a domain**
 - **Data type** specified for each domain
Domains, Attributes, Tuples, and Relations (cont’d.)

- **Relation schema** \(R \)
 - Denoted by \(R(A_1, A_2, ..., A_n) \)
 - Made up of a relation name \(R \) and a list of attributes, \(A_1, A_2, ..., A_n \)

- **Attribute** \(A_i \)
 - Name of a role played by some domain \(D \) in the relation schema \(R \)

- **Degree** (or **arity**) of a relation
 - Number of attributes \(n \) of its relation schema
Domains, Attributes, Tuples, and Relations (cont’d.)

- **Relation (or relation state)**
 - Set of *n*-tuples \(r = \{ t_1, t_2, \ldots, t_m \} \)
 - Each *n*-tuple \(t \)
 - Ordered list of *n* values \(t = <v_1, v_2, \ldots, v_n> \)
 - Each value \(v_i, 1 \leq i \leq n \), is an element of \(\text{dom}(A_i) \) or is a special NULL value
Domains, Attributes, Tuples, and Relations (cont’d.)

- Relation (or relation state) $r(R)$
 - Mathematical relation of degree n on the domains $\text{dom}(A_1), \text{dom}(A_2), \ldots, \text{dom}(A_n)$
 - Subset of the Cartesian product of the domains that define R:
 - $r(R) \subseteq (\text{dom}(A_1) \times \text{dom}(A_2) \times \ldots \times \text{dom}(A_n))$
Domains, Attributes, Tuples, and Relations (cont’d.)

- **Cardinality**
 - Total number of values in domain

- **Current relation state**
 - Relation state at a given time
 - Reflects only the valid tuples that represent a particular state of the real world

- **Attribute names**
 - Indicate different *roles*, or interpretations, for the domain
Characteristics of Relations

- Ordering of tuples in a relation
 - Relation defined as a set of tuples
 - Elements have no order among them
- Ordering of values within a tuple and an alternative definition of a relation
 - Order of attributes and values is not that important
 - As long as correspondence between attributes and values maintained
Characteristics of Relations (cont’d.)

- Alternative definition of a relation
 - Tuple considered as a set of \(<\text{attribute}>, \text{<value>}\) pairs
 - Each pair gives the value of the mapping from an attribute \(A_i\) to a value \(v_i\) from \(\text{dom}(A_i)\)

- Use the first definition of relation
 - Attributes and the values within tuples are ordered
 - Simpler notation
Characteristics of Relations (cont’d.)

Figure 3.2
The relation STUDENT from Figure 3.1 with a different order of tuples.

<table>
<thead>
<tr>
<th>Name</th>
<th>Ssn</th>
<th>Home_phone</th>
<th>Address</th>
<th>Office_phone</th>
<th>Age</th>
<th>Gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dick Davidson</td>
<td>422-11-2320</td>
<td>NULL</td>
<td>3452 Elgin Road</td>
<td>(817)749-1253</td>
<td>25</td>
<td>3.53</td>
</tr>
<tr>
<td>Barbara Benson</td>
<td>533-69-1238</td>
<td>(817)839-8461</td>
<td>7384 Fontana Lane</td>
<td>NULL</td>
<td>19</td>
<td>3.25</td>
</tr>
<tr>
<td>Rohan Panchal</td>
<td>489-22-1100</td>
<td>(817)376-9821</td>
<td>265 Lark Lane</td>
<td>(817)749-6492</td>
<td>28</td>
<td>3.93</td>
</tr>
<tr>
<td>Chung-cha Kim</td>
<td>381-62-1245</td>
<td>(817)375-4409</td>
<td>125 Kirby Road</td>
<td>NULL</td>
<td>18</td>
<td>2.89</td>
</tr>
<tr>
<td>Benjamin Bayer</td>
<td>305-61-2435</td>
<td>(817)373-1616</td>
<td>2918 Bluebonnet Lane</td>
<td>NULL</td>
<td>19</td>
<td>3.21</td>
</tr>
</tbody>
</table>
Characteristics of Relations (cont’d.)

- Values and NULLs in tuples
 - Each value in a tuple is atomic

- Flat relational model
 - Composite and multivalued attributes not allowed
 - First normal form assumption

- Multivalued attributes
 - Must be represented by separate relations

- Composite attributes
 - Represented only by simple component attributes in basic relational model
Characteristics of Relations (cont’d.)

- NULL values
 - Represent the values of attributes that may be unknown or may not apply to a tuple
 - Meanings for NULL values
 - Value unknown
 - Value exists but is not available
 - Attribute does not apply to this tuple (also known as value undefined)
Characteristics of Relations (cont’d.)

- Interpretation (meaning) of a relation
 - **Assertion**
 - Each tuple in the relation is a fact or a particular instance of the assertion
 - **Predicate**
 - Values in each tuple interpreted as values that satisfy predicate
Relational Model Notation

- Relation schema R of degree n
 - Denoted by $R(A_1, A_2, ..., A_n)$
- Uppercase letters Q, R, S
 - Denote relation names
- Lowercase letters q, r, s
 - Denote relation states
- Letters t, u, v
 - Denote tuples
Relational Model Notation

- **Name of a relation schema:** STUDENT
 - Indicates the current set of tuples in that relation
- **Notation:** STUDENT(Name, Ssn, ...)
 - Refers only to relation schema
- **Attribute A can be qualified with the relation name R to which it belongs**
 - Using the dot notation $R.A$
Relational Model Notation

- **n-tuple** t in a relation $r(R)$
 - Denoted by $t = <v_1, v_2, ..., v_n>$
 - v_i is the value corresponding to attribute A_i

- Component values of tuples:
 - $t[A_i]$ and $t.A_i$ refer to the value v_i in t for attribute A_i
 - $t[A_u, A_w, ..., A_z]$ and $t.(A_u, A_w, ..., A_z)$ refer to the subtuple of values $<v_u, v_w, ..., v_z>$ from t corresponding to the attributes specified in the list
Relational Model Constraints

- Constraints
 - Restrictions on the actual values in a database state
 - Derived from the rules in the miniworld that the database represents

- Inherent model-based constraints or implicit constraints
 - Inherent in the data model
Relational Model Constraints (cont’d.)

- **Schema-based constraints or explicit constraints**
 - Can be directly expressed in schemas of the data model

- **Application-based or semantic constraints or business rules**
 - Cannot be directly expressed in schemas
 - Expressed and enforced by application program
Domain Constraints

- Typically include:
 - Numeric data types for integers and real numbers
 - Characters
 - Booleans
 - Fixed-length strings
 - Variable-length strings
 - Date, time, timestamp
 - Money
 - Other special data types
Key Constraints and Constraints on NULL Values

- No two tuples can have the same combination of values for all their attributes.

- **Superkey**
 - No two distinct tuples in any state \(r \) of \(R \) can have the same value for \(SK \)

- **Key**
 - Superkey of \(R \)
 - Removing any attribute \(A \) from \(K \) leaves a set of attributes \(K \) that is not a superkey of \(R \) any more
Key Constraints and Constraints on NULL Values (cont’d.)

- Key satisfies two properties:
 - Two distinct tuples in any state of relation cannot have identical values for (all) attributes in key
 - Minimal superkey
 - Cannot remove any attributes and still have uniqueness constraint in above condition hold
Key Constraints and Constraints on NULL Values (cont’d.)

- **Candidate key**
 - Relation schema may have more than one key

- **Primary key** of the relation
 - Designated among candidate keys
 - Underline attribute

- Other candidate keys are designated as unique keys
Key Constraints and Constraints on NULL Values (cont’d.)

Figure 3.4
The CAR relation, with two candidate keys: License_number and Engine_serial_number.

<table>
<thead>
<tr>
<th>License_number</th>
<th>Engine_serial_number</th>
<th>Make</th>
<th>Model</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas ABC-739</td>
<td>A69352</td>
<td>Ford</td>
<td>Mustang</td>
<td>02</td>
</tr>
<tr>
<td>Florida TVP-347</td>
<td>B43696</td>
<td>Oldsmobile</td>
<td>Cutlass</td>
<td>05</td>
</tr>
<tr>
<td>New York MPO-22</td>
<td>X83554</td>
<td>Oldsmobile</td>
<td>Delta</td>
<td>01</td>
</tr>
<tr>
<td>California 432-TFY</td>
<td>C43742</td>
<td>Mercedes</td>
<td>190-D</td>
<td>99</td>
</tr>
<tr>
<td>California RSK-629</td>
<td>Y82935</td>
<td>Toyota</td>
<td>Camry</td>
<td>04</td>
</tr>
<tr>
<td>Texas RSK-629</td>
<td>U028365</td>
<td>Jaguar</td>
<td>XJS</td>
<td>04</td>
</tr>
</tbody>
</table>
Relational Databases and Relational Database Schemas

- **Relational database schema S**
 - Set of relation schemas \(S = \{R_1, R_2, \ldots, R_m\} \)
 - Set of integrity constraints IC

- **Relational database state**
 - Set of relation states \(DB = \{r_1, r_2, \ldots, r_m\} \)
 - Each \(r_i \) is a state of \(R_i \) and such that the \(r_i \) relation states satisfy integrity constraints specified in IC
Relational Databases and Relational Database Schemas (cont’d.)

- Invalid state
 - Does not obey all the integrity constraints

- Valid state
 - Satisfies all the constraints in the defined set of integrity constraints IC
Integrity, Referential Integrity, and Foreign Keys

- **Entity integrity constraint**
 - No primary key value can be NULL

- **Referential integrity constraint**
 - Specified between two relations
 - Maintains consistency among tuples in two relations
Integrity, Referential Integrity, and Foreign Keys (cont’d.)

- **Foreign key** rules:
 - The attributes in FK have the same domain(s) as the primary key attributes PK
 - Value of FK in a tuple t_1 of the current state $r_1(R_1)$ either occurs as a value of PK for some tuple t_2 in the current state $r_2(R_2)$ or is NULL
Integrity, Referential Integrity, and Foreign Keys (cont’d.)

- Diagrammatically display referential integrity constraints
 - Directed arc from each foreign key to the relation it references
- All integrity constraints should be specified on relational database schema
Other Types of Constraints

- Semantic integrity constraints
 - May have to be specified and enforced on a relational database
 - Use **triggers** and **assertions**
 - More common to check for these types of constraints within the application programs
Other Types of Constraints (cont’d.)

- **Functional dependency constraint**
 - Establishes a functional relationship among two sets of attributes X and Y
 - Value of X determines a unique value of Y

- **State constraints**
 - Define the constraints that a valid state of the database must satisfy

- **Transition constraints**
 - Define to deal with state changes in the database
Update Operations, Transactions, and Dealing with Constraint Violations

- Operations of the relational model can be categorized into retrievals and updates
- Basic operations that change the states of relations in the database:
 - Insert
 - Delete
 - Update (or Modify)
Figure 3.6
One possible database state for the COMPANY relational database schema.

EMPLOYEE

<table>
<thead>
<tr>
<th>Fname</th>
<th>Minit</th>
<th>Lname</th>
<th>Ssn</th>
<th>Bdate</th>
<th>Address</th>
<th>Sex</th>
<th>Salary</th>
<th>Super_ssn</th>
<th>Dno</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>B</td>
<td>Smith</td>
<td>123456789</td>
<td>1965-01-09</td>
<td>731 Fondren, Houston, TX</td>
<td>M</td>
<td>30000</td>
<td>333445555</td>
<td>5</td>
</tr>
<tr>
<td>Franklin</td>
<td>T</td>
<td>Wong</td>
<td>333445555</td>
<td>1955-12-08</td>
<td>638 Voes, Houston, TX</td>
<td>M</td>
<td>40000</td>
<td>888665555</td>
<td>5</td>
</tr>
<tr>
<td>Alicia</td>
<td>J</td>
<td>Zelaya</td>
<td>999887777</td>
<td>1968-01-19</td>
<td>3321 Castle, Spring, TX</td>
<td>F</td>
<td>25000</td>
<td>987654321</td>
<td>4</td>
</tr>
<tr>
<td>Jennifer</td>
<td>S</td>
<td>Wallace</td>
<td>987654321</td>
<td>1941-06-20</td>
<td>291 Berry, Bellaire, TX</td>
<td>F</td>
<td>43000</td>
<td>888665555</td>
<td>4</td>
</tr>
<tr>
<td>Ramesh</td>
<td>K</td>
<td>Narayan</td>
<td>666884444</td>
<td>1962-09-15</td>
<td>975 Fire Oak, Humble, TX</td>
<td>M</td>
<td>38000</td>
<td>333445555</td>
<td>5</td>
</tr>
<tr>
<td>Joyce</td>
<td>A</td>
<td>English</td>
<td>453453453</td>
<td>1972-07-31</td>
<td>5631 Rice, Houston, TX</td>
<td>F</td>
<td>25000</td>
<td>333445555</td>
<td>5</td>
</tr>
<tr>
<td>Ahmad</td>
<td>V</td>
<td>Jabbar</td>
<td>987987987</td>
<td>1969-03-29</td>
<td>980 Dallas, Houston, TX</td>
<td>M</td>
<td>25000</td>
<td>987654321</td>
<td>4</td>
</tr>
<tr>
<td>James</td>
<td>E</td>
<td>Borg</td>
<td>888665555</td>
<td>1937-11-10</td>
<td>450 Stone, Houston, TX</td>
<td>M</td>
<td>55000</td>
<td>NULL</td>
<td>1</td>
</tr>
</tbody>
</table>

DEPARTMENT

<table>
<thead>
<tr>
<th>Dname</th>
<th>Dnumber</th>
<th>Mgr_ssn</th>
<th>Mgr_start_date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>5</td>
<td>333445555</td>
<td>1988-05-22</td>
</tr>
<tr>
<td>Administration</td>
<td>4</td>
<td>987654321</td>
<td>1995-01-01</td>
</tr>
<tr>
<td>Headquarters</td>
<td>1</td>
<td>888665555</td>
<td>1981-06-10</td>
</tr>
</tbody>
</table>

DEPT_LOCATIONS

<table>
<thead>
<tr>
<th>Dnumber</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Houston</td>
</tr>
<tr>
<td>4</td>
<td>Stafford</td>
</tr>
<tr>
<td>5</td>
<td>Bellaire</td>
</tr>
<tr>
<td>5</td>
<td>Sugarland</td>
</tr>
<tr>
<td>5</td>
<td>Houston</td>
</tr>
</tbody>
</table>
Figure 3.6
One possible database state for the COMPANY relational database schema.

<table>
<thead>
<tr>
<th>WORKS_ON</th>
<th></th>
<th>PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essn</td>
<td>Pno</td>
<td>Hours</td>
</tr>
<tr>
<td>123456789</td>
<td>1</td>
<td>32.5</td>
</tr>
<tr>
<td>123456789</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>666884444</td>
<td>3</td>
<td>40.0</td>
</tr>
<tr>
<td>453453453</td>
<td>1</td>
<td>20.0</td>
</tr>
<tr>
<td>453453453</td>
<td>2</td>
<td>20.0</td>
</tr>
<tr>
<td>333445555</td>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>333445555</td>
<td>3</td>
<td>10.0</td>
</tr>
<tr>
<td>333445555</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>333445555</td>
<td>20</td>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPENDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essn</td>
</tr>
<tr>
<td>333445555</td>
</tr>
<tr>
<td>333445555</td>
</tr>
<tr>
<td>333445555</td>
</tr>
<tr>
<td>987654321</td>
</tr>
<tr>
<td>123456789</td>
</tr>
<tr>
<td>123456789</td>
</tr>
<tr>
<td>123456789</td>
</tr>
</tbody>
</table>
Figure 3.7
Referential integrity constraints displayed on the COMPANY relational database schema.
The Insert Operation

- Provides a list of attribute values for a new tuple \(t \) that is to be inserted into a relation \(R \)
- Can violate any of the four types of constraints
- If an insertion violates one or more constraints
 - Default option is to reject the insertion
The Delete Operation

- Can violate only referential integrity
 - If tuple being deleted is referenced by foreign keys from other tuples
- Restrict
 - Reject the deletion
- Cascade
 - Propagate the deletion by deleting tuples that reference the tuple that is being deleted
- Set null or set default
 - Modify the referencing attribute values that cause the violation
The Update Operation

- Necessary to specify a condition on attributes of relation
 - Select the tuple (or tuples) to be modified
- If attribute not part of a primary key nor of a foreign key
 - Usually causes no problems
- Updating a primary/foreign key
 - Similar issues as with Insert/Delete
The Transaction Concept

- **Transaction**
 - Executing program
 - Includes some database operations
 - Must leave the database in a valid or consistent state

- **Online transaction processing (OLTP) systems**
 - Execute transactions at rates that reach several hundred per second
Summary

- Characteristics differentiate relations from ordinary tables or files
- Classify database constraints into:
 - Inherent model-based constraints, explicit schema-based constraints, and application-based constraints
- Modification operations on the relational model:
 - Insert, Delete, and Update