Solutions to Practice Problems for Exam 1
- For each of the following languages over alphabet { a, b },
write a regular expression and construct a DFA:
- L = { a, aab, bab }
- L = words in which the number of b's is divisible by 3.
- L = words in which the third last symbol is an a.
- L = { a, aab, bab }
- Consider the following NFA with empty transitions:
start p final r trans p:a:p trans p:b:q trans p:c:r trans q::p trans q:a:q trans q:b:r trans r::q trans r:a:r trans r:c:p
- Compute the e-closure for each state
- List all the strings of length 3 or less accepted by the NFA.
- Convert NFA to DFA
- Compute the e-closure for each state
- Using Arden's Lemma, derive the regular expression for the following DFA:
start q0 final q0 trans q0:a:q0 trans q0:b:q1 trans q1:a:q1 trans q1:b:q2 trans q2:a:q2 trans q2:b:q0
- Minimize the following DFA:
start q0 final q1 q2 q5 trans q0:a:q1 trans q0:b:q2 trans q1:a:q3 trans q1:b:q4 trans q2:a:q4 trans q2:b:q3 trans q3:a:q5 trans q3:b:q5 trans q4:a:q5 trans q4:b:q5 trans q5:a:q5 trans q5:b:q5