Practice Problems for Exam 1

  1. For each of the following languages over alphabet { a, b }, write a regular expression and construct a DFA:

    • L = { a, aab, bab }

    • L = words in which the number of b's is divisible by 3.

    • L = words in which the third last symbol is an a.

  2. Consider the following NFA with empty transitions:
    start p
    final r
    trans p:a:p
    trans p:b:q
    trans p:c:r
    trans q::p
    trans q:a:q
    trans q:b:r
    trans r::q
    trans r:a:r
    trans r:c:p
    

    • Compute the e-closure for each state

    • List all the strings of length 3 or less accepted by the NFA.

    • Convert NFA to DFA

  3. Using Arden's Lemma, derive the regular expression for the following DFA:
    start q0
    final q0
    trans q0:a:q0
    trans q0:b:q1
    trans q1:a:q1
    trans q1:b:q2
    trans q2:a:q2
    trans q2:b:q0
    

  4. Minimize the following DFA:
    start q0
    final q1 q2 q5
    trans q0:a:q1
    trans q0:b:q2
    trans q1:a:q3
    trans q1:b:q4
    trans q2:a:q4
    trans q2:b:q3
    trans q3:a:q5
    trans q3:b:q5
    trans q4:a:q5
    trans q4:b:q5
    trans q5:a:q5
    trans q5:b:q5