## CSC 4510/6510 Automata Exam 1 (Thursday, October 10, 2024)

1) Write a regular expression and construct a DFA for the language:

 $L = \{w \mid w \in \{a,b\}^* \text{ and } w \text{ has an 'a' in the second from last position } \}$ 



2) Convert the following NFA to a DFA using the NTD algorithm:



3) Apply the RMET algorithm to convert the following NFA with  $\epsilon$  transitions to an NFA with no  $\epsilon$  transitions:



NFA without e-transitions

| state | e-closure |  |
|-------|-----------|--|
| q0    | q0, q1    |  |
| q1    | q1        |  |
| q2    | q2, q3    |  |
| q3    | q3        |  |

|    | 0  | 1          |
|----|----|------------|
| q0 | q3 | q1, q2, q3 |
| q1 | q3 | q1         |
| q2 |    |            |
| q3 |    |            |



4) Using Arden's Lemma, derive the regular expression for the following DFA:



Initial Equations:

A0 = aA1 + bA2 A1 = aA1 + bA3 + e A2 = aA4 + bA2 + e A3 = aA1 + bA3A4 = aA4 + bA2

Using Arden's Lemma on A3's equation, we get:

A3 = b\*aA1

Using Arden's Lemma on A4's equation, we get:

A4 = a\*bA2

Substituting these values in A1's and A2's equations, we get:

 $A1 = aA1 + bb^*aA1 + e = (a + bb^*a)A1 + e = (a+bb^*a)^*$ 

 $A2 = bA2 + aa^{*}bA1 + e = (b + aa^{*}b)A2 + e = (b+aa^{*}b)^{*}$ 

Substituting these values in A0's equations, we get:

 $A0 = a(a+bb^*a)^* + b(b+aa^*b)^*$ 

## 5) Minimize the following DFA



6) Precisely state the Pumping Lemma for regular languages.

For every regular language L, there is a constant natural number N such that for every w in L, with  $|w| \ge N$ , there exist words u, v, x, such that w = uvx with  $|uv| \le N$ ,  $|v| \ge 1$ , and for all natural numbers i  $\ge 0$ ,  $uv^{i}x$  is in L.

7) Using the Pumping Lemma for regular languages, prove that the language of palindromes described below is not regular:

 $PAL = \{ w | w \in \{a,b\}^* and w = w^R \}$ 

Let PAL be regular.

Pumping Lemma guarantees us a constant N.

## Choose w = a<sup>N</sup>ba<sup>N</sup>

Clearly, w is in PAL and  $|w| \ge N$ .

Pumping Lemma says that w = uvx, with  $|uv| \le N$ ,  $|v| \ge 1$ , and for all  $i \ge 0$ ,  $uv^ix$  is in PAL.

So,  $u = a^{k_1}$ ,  $v = a^{k_2}$ , and  $x = a^{k_3}ba^N$ , where  $k_1 + k_2 + k_3 = N$ ,  $k_2 \ge 1$ .

## Choose i = 2.

So,  $a^{k_1} a^{2k_2} a^{k_3} ba^N$  is in PAL. i.e.,  $a^{N+k_2} ba^N$  is in PAL. But this is a contradiction because number of a's before the b is not equal to number of a's after the b (since  $k_2 \ge 1$ ), which makes  $a^{N+k_2} ba^N$  non-palindrome.

Therefore, PAL is not regular.

- 8) True or False. Explain your answer:
  - a) Every finite subset of a non-regular language is regular. **TRUE**.

Because every finite set is regular.

b) Every subset of a regular language is regular. **FALSE**.

Because  $\{a^nb^n | n \ge 0\}$  is not regular and it is a subset of  $L(a^*b^*)$  which is regular.

c) The set of words over alphabet { a, b } with equal number of a's and b's is regular. **FALSE**.

 $EQUAL \cap L(a*b*) = \{a^nb^n | n \ge 0\}$ 

If EQUAL were regular, by closure under intersection,  $\{a^nb^n | n \ge 0\}$  would be regular, a contradiction. So, EQUAL must not be regular.

d) The regular expressions (a\*b + bba)\*ba and (a\*bba + bbaba)\* are equivalent. **FALSE**.

Because empty string belongs in  $L((a^b + bba)^b)$  but does not belong in  $L((a^b + bba)^c)$ .