
Regular Expressions and Deterministic Finite Automata

Given an alphabet , a finite set of symbols, a language over the alphabet is any set of strings made up
of the symbols from . For example, if = , then the following are some examples of languages
over :

L1 = { aab, aba, bab, aa }

L2 = { w | w has equal number of a’s and b’s } = { abab, aaabbb, abba, , … }, here is the empty string.

L3 = { w | w is made up only a’s and has a length which is a prime number } = { aa, aaa, aaaaa, … }

We define 3 operations on Languages. Let L, L1, and L2 be languages. Then,

1. L1.L2 = { w1.w2 | w1 L1 and w2 L2 }, where w1.w2 is the string concatenation of w1 and w2.

2. L1 L2 = { w | w L1 or w L2 }, called the union

3. L* = { } L L.L L.L.L …

I. Regular Expressions

Regular expressions are a mathematical mechanism to define a class of languages called regular
languages. Given an alphabet of symbols, , a regular expression is defined as follows:

1. Every symbol in is a regular expression.

2. is a regular expression

3. if and are regular expressions, then so are the following

 is called the concatenation of and , is called the union of and , and is called the
Kleene closure of . The parentheses may be left out with the understanding that the operator has
highest precedence, the concatenation operator has the next level of precedence, and the operator the
lowest precedence. Some examples of regular expressions over the alphabet are:

r1 = ab(a+b)*ab

r2 = (a+b)*

r3 = aa+bb

Σ Σ
Σ Σ {a, b}

Σ

λ λ

∈ ∈
∪ ∈ ∈

λ ∪ ∪ ∪ ∪

Σ

Σ
ϵ

r s
(rs)
(r + s)
(r)∗

(rs) r s (r + s) r s (r)∗
r ∗

+
{a, b}

Each regular expression represents a language which is defined as follows:

1. L(a) = { a }, for any a in

2. L() = { }

3. L() = L().L()

4. L() = L() + L()

5. L() = L()*

Apply this definition to the earlier 3 examples of regular expressions, we get the following:

L(ab(a+b)*ab) = { w | w starts with ab and ends with ab }

L((a+b)*) = set of all strings made up of any number of a’s and b’s in any order including the empty string.

L(aa+bb) = { aa, bb }

II. Deterministic Finite Automata

A deterministic Finite Automata (DFA) is a mathematical model of a simple computational device that
reads a string of symbols over the input alphabet , and either accepts or reject the input. The set of
strings accepted by the DFA is referred to as the language of the DFA.

A deterministic finite automata (DFA) is defined as a 4-tuple (Q,T,S,F), where

Q is a finite set of states

S Q is designated as a start state

F Q is a designated set of final states

T is a transition function from Q x Q

A DFA can be pictured as a graph with states as the nodes and the transitions as directed edges from one
node to another. The transitions/edges will be labeled by the alphabet symbol. Start state will be
designated by an arrow mark and final states will be designated by double circles. Here are DFAs for the
three regular expressions discussed before:

r L(r)

Σ
ϵ λ
rs r s
r + s r s
r∗ r

Σ

∈
⊆

Σ →

The DFA transition functions can also be represented in tabular form as follows:

ab(a+b)*ab

Start State = 1

Final States = 6

FROM SYMBOL TO

1 a 2

1 b 5

2 a 5

2 b 3

3 a 4

3 b 3

4 a 4

4 b 6

5 a 5

5 b 5

6 a 4

6 b 3

(a+b)*

Start State = 1

Final States = 1

FROM SYMBOL TO

1 a 1

1 b 1

aa+bb

Start State = 1

Final States = 4, 5

FROM SYMBOL TO

1 a 2

1 b 3

2 a 4

2 b 6

3 a 6

3 b 5

4 a 6

4 b 6

5 a 6

5 b 6

6 a 6

6 b 6

How does a DFA work?

A DFA can be used to verify if a string belongs to a language or not. All strings that are "accepted" by a
DFA belong to it’s language and those that are "rejected" do not belong to it’s language. How do we
determine "acceptance" and "rejection"?

A configuration for a DFA is a pair, (q, s), where q is a state and s is a string made up of symbols from the
alphabet. Given an input string, w, and a DFA with start state q0, the initial configuration is (q0,w). DFA
moves from one configuration to the next as follows:

(q, ax) => (T(q,a), x)

until it reaches the following configuration

(p,)

We say that a string w is accepted by a DFA if (q0,w) =>* (f,) and f is a final state; otherwise it is rejected.

Let us see if the input string abaaab is accepted or rejected by the DFA for ab(a+b)*ab shown earlier.

(1,abaaab) => (2,baaab) => (3,aaab) => (4,aab) => (4,ab) => (4,b) => (5,)

Since 5 is a final state, the DFA accepts the string abaaab.

The input string abaaba is rejected because (1,abaaba) => (2,baaba) => (3,aaba) => (4,aba) => (4,ba) =>
(6,a) => (4,) and 4 is not a final state.

Language of DFA, D, L(D) = set of all strings accepted by D

III. Regular Expression to DFA (Direct Algorithm)

It turns out that for every regular expression there is an equivalent DFA (i.e. the language defined by the
regular expression equals the language accepted by the equivalent DFA).

This equivalent DFA is what the PLY and similar compiler-compiler systems use to extract the tokens from
the input string!

ALGORITHM: Convert Regular Expression to DFA

INPUT: regular expression, r

OUTPUT: DFA, D, such that Language(D) = L(r)

METHOD: (To illustrate each step of the algorithm, we will use the regular expression (a+b)*abb as an
example, however the method is general that it will work for any regular expression)

Step 1: Expression Tree

Augment r with a special end symbol # to get r#, e.g. (a+b)*abb#

Using the following grammar, construct an expression tree for r#

re	:	term	|	re	PLUS	term
term	:	factor	|	term	factor
factor	:	niggle	|	factor	STAR
niggle	:	LETTER	|	EPSILON	|	LPAREN	re	RPAREN

Step 2: Unique Number for Leaf Nodes

Assign a unique integer to each leaf node (except for the leaf) of the expression tree.

λ

λ

λ

λ

ϵ

Step 3: nullable(n), firstpos(n), lastpos(n)

Traverse the tree to compute nullable(n), firstpos(n), and lastpos(n) for each node, n in the tree using
the following definitions:

Node n nullable(n) firstpos(n) lastpos(n)

Leaf true { } { }

Leaf i false { i } { i }

(c1 + c2) nullable(c1) or
nullable(c2)

firstpos(c1) firstpos(c2)
lastpos(c1)

lastpos(c2)

(c1 . c2) nullable(c1) and
nullable(c2)

if nullable(c1) then
 firstpos(c1) firstpos(c2)
else
 firstpos(c1)

if
nullable(c2)
then

 lastpos(c1)

lastpos(c2)
else

 lastpos(c2)

(c1)* true firstpos(c1) lastpos(c1)

The intuition behind these functions are as follows. Let L(n) be the language generated by the subtree
rooted at node n.

nullable(n) = L(n) contains the empty string

firstpos(n) = set of positions under n than can match the first symbol of a string in L(n)

lastpos(n) = set of positions under n than can match the last symbol of a string in L(n)

For the example regular expression, the following shows the values of these functions:

ϵ

∪ ∪

∪
∪

λ

Step 4: followpos(n)

Compute followpos(n) for leaf nodes/positions.

followpos(i) = set of positions that can follow position i in any generated string.

followpos(n) can be computed using the following algorithm:

	for	each	node	n	in	the	tree	do
								if	n	is	a	concat	node	with	left	child	c1	and	right	child	c2	then
												for	each	i	in	lastpos(c1)	do
																followpos(i)	=	followpos(i)	U	firstpos(c2)
								else	if	n	is	a	Kleene	star	node
												for	each	i	in	lastpos(n)	do
																followpos(i)	=	followpos(i)	U	firstpos(n)
								else
												pass

Applying the algorithm to our example, we get the following values of followpos(n):

Node n followpos(n)

1 { 1, 2, 3 }

2 { 1, 2, 3 }

3 { 4 }

4 { 5 }

5 { 6 }

6 { }

Step 5: Generate DFA

		s0	=	firstpos(root-node);	designate	it	the	start	state
		states	=	{	s0	}	and	is	unmarked
		while	(there	is	an	unmarked	state	T	in	states)	do
								mark	T
								for	each	input	symbol	'a'	in	the	alphabet	do
												let	U	be	the	union	of	followpos(p)	for	all	positions	p	in	T	such	that	
																							the	symbol	at	position	p	is	'a'
												if	U	is	not	empty	and	not	in	states	then
																add	U	as	an	unmarked	state	in	states
												trans[T,a]	=	U
			Designate	any	state	containing	the	#-position	as	a	final	state

Applying this algorithm to our example, we get:

Initially

s0 = {1,2,3}

states = { {1,2,3} }

Iteration 1 or while loop

T = {1,2,3}

Of the elements of T, 1,3 correspond to a and 2 corresponds to b

{1,2,3} on a transitions to followpos(1) U followpos(3) = {1,2,3,4}

{1,2,3} on b transitions to followpos(2) = {1,2,3}

i.e.

trans[{1,2,3},a] = {1,2,3,4}

trans[{1,2,3},b] = {1,2,3}

Iteration 2 or while loop

T = {1,2,3,4}

Of the elements of T, 1,3 correspond to a and 2,4 corresponds to b

{1,2,3,4} on a transitions to followpos(1) U followpos(3) = {1,2,3,4}

{1,2,3,4} on b transitions to followpos(2) U followpos(3) = {1,2,3,5}

i.e.

trans[{1,2,3,4},a] = {1,2,3,4}

trans[{1,2,3,4},b] = {1,2,3,5}

Iteration 3 or while loop

T = {1,2,3,5}

Of the elements of T, 1,3 correspond to a and 2,5 corresponds to b

{1,2,3,5} on a transitions to followpos(1) U followpos(3) = {1,2,3,4}

{1,2,3,5} on b transitions to followpos(2) U followpos(5) = {1,2,3,6}

i.e.

trans[{1,2,3,5},a] = {1,2,3,4}

trans[{1,2,3,5},b] = {1,2,3,6}

Iteration 4 or while loop

T = {1,2,3,6}

Of the elements of T, 1,3 correspond to a, 2 corresponds to b, and 6 corresponds to #

{1,2,3,6} on a transitions to followpos(1) U followpos(3) = {1,2,3,4}

{1,2,3,6} on b transitions to followpos(2) = {1,2,3}

i.e.

trans[{1,2,3,6},a] = {1,2,3,4}

trans[{1,2,3,6},b] = {1,2,3}

We designate {1,2,3,6} as a final state since it contains the position of #

Note: The "marking" of states is not shown above, but we can worry about this in the implementation!

Taking all the values of T and the values of trans, we obtain the following DFA

