Describing Syntax and Semantics

of

Programming Languages

Part ]



Programming Language Description

Description must
* be concise and understandable
* be useful to both programmers and language implementors
* cover both
 syntax (forms of expressions, statements, and program units) and
« semantics (meanings of expressions, statements, and program units
Example: Java while-statement
Syntax: while (boolean expr) statement

Semantics: if boolean expr is true then statement is executed and control
returns to the expression to repeat the process; if boolean expr is false then
control is passed on to the statement following the while-statement.

2



Lexemes and Tokens

Lowest-level syntactic units are called lexemes. Lexemes include identifiers,
literals, operators, special keywords etc.

A token is a category of the lexemes (i.e. similar lexemes belong to a token)

Example: Java statement: index

Lexeme

Token

index

IDENTIFIER

EQUALS

2

NUMBER

*

MUL

count

IDENTIFIER

PLUS

17

NUMBER

SEMI

= 2 * count + 17;

IDENTIFIER tokens: index, count
NUMBER tokens: 2, 17
remaining 4 lexemes (=, *, +, ;)arelone

examples of their corresponding token!



Lexemes and Tokens: Another Example

Example: SQL statement
select sno, sname

from suppliers

where sname = ’'Smith’
Lexeme Token
select SELECT .
sno IDENTIFIER IDENTIFIER tokens: sno, same, suppliers
’ COMMA SLITERAL tokens: ‘Smith’
sname IDENTIFIER
from FROM remaining lexemes (select, from, where, ,, =)
suppliers IDENTIFIER . .
where WHERE are lone examples of their corresponding token!
sname IDENTIFIER
= EQUALS
‘Smith’ SLITERAL ,




Lexemes and Tokens: A third Example

Example: WAE expressions
{with {{x 5} {y 2}} {+ x y}};

Lexeme |Token Lexeme |Token TOKENS:
{ LBRACE } RBRACE

with WITH } RBRACE rLeBBFé/;\\gE
{ LBRACE { LBRACE oLUS

{ LBRACE + PLUS MINUS

X ID X ID TIMES

5 NUMBER y ID DIV

} RBRACE } RBRACE ID

{ LBRACE } RBRACE WITH

y ID i SEMI :\I:UMBER
2 NUMBER SEMI




Lexical Analyzer

A lexical analyzer is a program that reads an input program/expression/query and
extracts each lexeme from it (classifying each as one of the tokens).

Two ways to write this lexical analyzer program:

1. Write it from scratch! i.e. choose your favorite programming language (python!)
and write a program in python that reads input string (which contain the input
program, expression, or query) and extracts the lexemes.

2. Use a code-generator (Lex, Yacc, PLY, ANTLR, Bison, ...) that reads a high-level
specification (in the form of regular expressions) of all tokens and generates a
lexical analyzer program for you!

3. We will see how to write the lexical analyzer from scratch later.
4. Now, we will learn how to do it using PLY: http:/www.dabeaz.com/ply/



Regular Expressions in Python

https://docs.python.org/3/library/re.html

https://www.w3schools.com/python/python_regex.asp

Meta Characters used in Python regular expressions:

Meta Description Examples
[] A set of characters [a-z], [0-9], [xyz012]
. Any one character (except newline) he..o,
N starts with “hello
$ ends with world$
* Zero or more occurrences [a-z]*
+ one or more occurrences [a-zA-Z]+
L one or zero occurrence [-+]?
{} specify number of occurrences [0-9]{5}
| either or [a-z]+ | [A-Z]+
§) capture and group ([0-9]{5}) use \1 \2 etc. to refer
\ begins special sequence; also used to escape meta characters  |\d, \w, etc. (see documentation)

7




import ply.lex as lex

reserved

tokens =

[ “NUMBER','ID', 'LBRACE', 'RBRACE', 'SEMI', 'PLUS',\
'"MINUS', 'TIMES', 'DIV'] + list(reserved.values())

t LBRACE
t RBRACE
t_ SEMI
t WITH
t IF = r
t_PLUS

t_ MINUS
t TIMES

{ 'with':

t DIV = r'/"

PLY (Python Lex/Yacc): WAE Lexer

def t NUMBER(t):

r'[-+]2[0-9]+(\.([0-9]+)2)2'

t.value = float(t.value)
'WITH', 'if': 'IF' } t.type = 'NUMBER'

return t

def t ID(t):
r'[a-zA-Z][_a-zA-Z0-9]*'

t.type = reserved.get(t.value.lower(), 'ID")

= r’'\{' return t
= r’'\}'
r';' # Ignored characters
r'[wW][iI][tT][hH]' t _ignore = " \r\n\t"
"[iI]1[fF]"' t ignore COMMENT = r'\#.*'
F\4r pip install ply - -
=r'-" def t error(t):
= r'\*' or print("Illegal character
p|p3 install ply t.lexer.skip(1l)

lexer = lex.lex()

[
sS

%

t.value[0])



WAE Lexer continued

# Test it out
data = ''"'

{with {{x 5} {y 2}} {+ x y}};

# Give the lexer some input
print("Tokenizing: " ,data)
lexer.input(data)

# Tokenize
while True:
tok = lexer.token()
if not tok:
break # No more input
print (tok)

-The lexer object has just two methods:

lexer.input(data) and lexer.token()

- Usually, the Lexical Analyzer is used in

tandem with a Parser (the parser calls
lexer.token()) .

-So, the code on this page is written just to

debug the Lexical Analyzer.

-Once satisfied we can/should comment out

this code.



WAE Lexer continued
{with {{x 5} {y 2}} {+ x y}};

The PLY Lexer program we wrote will generate the following sequence of pairs of token
types and their values:

(‘LBRACE’,'{’), (‘WITH’,'with’), (‘LBRACE’,’'{‘), (‘LBRACE’,’'{‘), (‘ID’,’'x'),
(‘NUMBER',’5’), (‘RBRACE’,’}’), (‘LBRACE’,’'{‘), (‘ID’,’y’), (‘NUMBER’,’2'),
(‘RBRACE’,"{’), (‘RBRACE’,’'}’), (‘LBRACE’,’'{’'), (‘PLUS’,’+’), (‘ID',’'x")
(‘ID’,’y'), (‘RBRACE’,’}’), (‘RBRACE’,’}’), (‘SEMI',’;")

Let us see this program (WAELexer . py) in action!

10



Language Generators and Recognizers

Now that we know how to describe tokens of a program, let us learn how to describe a
“valid” sequence of tokens that constitutes a program. A valid program is referred to
as a sentence in formal language theory.

Two ways to describe the syntax:

(1) Language Generator: a mechanism that can be used to generate sentences of a
language. This is usually referred to as a Context-Free-Grammar (CFG). Easier
to understand.

(2) Language Recognizer: a mechanism that can be used to verify if a given string, p,
of characters (grouped in a sequence of tokens) belongs to a language L. The
syntax analyzer in a compiler is a language recognizer.

(3) There is a close connection between a language generator and a language
recognizer.

n



Chomsky Hierarchy and Backus-Naur Form

* Chomsky, a noted Linguist, defined a hierarchy of language generator mechanisms
or grammars for four different classes of languages. Two of them are used to
describe the syntax of programming languages:

* Regular Grammars: describe the tokens and are equivalent to regular
expressions.

« Context-free Grammars: describe the syntax of programming languages

 John Backus invented a similar mechanism, which was extended by Peter Naur later
and this mechanism is referred to as the Backus-Naur Form (BNF)

* Both these mechanisms are similar and we may use CFG or BNF to refer to them
interchangeably.

12



Fundamentals of Context Free Grammars

CFGs are a meta-language to describe another language. They are meta-languages for programming
languages!

A context-free grammar G has 4 components (N,T,P,S):

1) N, a set of non-terminal symbols or just called non-terminals; these denote abstractions that stand
for syntactic constructs in the programming language.

2) T, a set of terminal symbols or just called terminals; these denote the tokens of the programming
language

3) P, aset of production rules of the form

X—=>a

where X is a non-terminal and a (definition of X) is a string made up of terminals or non-terminals.
The production rules define the “valid” sequence of tokens for the programming language.

4) S, a non-terminal, that is designated as the start symbol; this denotes the highest level abstraction

standing for all possible programs in the programming language.
13



CFGs: Examples of Production rules

Note: We will use lower-case for non-terminals and upper-case for terminals.

(1) A Java assignment statement may be represented by the abstraction assign. The definition of
assign may be given by the production rule

assign — VAR EQUALS expression

(2) A Java if statement may be represented by the abstraction i fstmt and the following production
rules:

ifstmt — IF LPAREN logic_ expr RPAREN stmt

ifstmt — IF LPAREN logic expr RPAREN stmt ELSE stmt

These two rules have the same LHS; They can be combined into one rule with “or” on the RHS:
ifstmt — IF LPAREN logic_expr RPAREN stmt |

IF LPAREN logic expr RPAREN stmt ELSE stmt

In the above examples, we have to introduce production rules that define the various abstractions used
such as expression, logic_expr, and stmt 1



CFGs: Examples of Production rules
(3) Alist of identifiers in Java may be represented by the abstraction ident 1ist. The definition of
ident 1list can be given by the following recursive production rules:
ident list — IDENTIFIER

IMPORTANT PATTERN!

ident_list — ident_list COMMA IDENTIFIER

Notice that the second rule is recursive because the non-terminal ident 1ist on the LHS also appearsin
the RHS.

It is time to learn how these production rules are to be used! The production rules are a type of
“replacement” or “rewrite” rules, where the LHS is replaced by the RHS. Consider the following
replacements/rewrites starting with ident list:

ident list
= ident list COMMA IDENTIFIER
= ident list COMMA IDENTIFIER COMMA IDENTIFIER
= ident list COMMA IDENTIFIER COMMA IDENTIFIER COMMA IDENTIFIER
= IDENTIFIER COMMA IDENTIFIER COMMA IDENTIFIER COMMA IDENTIFIER

substituting these token types by their values, we mayget: x, y, z, u



WAE PLY Grammar

Note: In PLY, we use : instead of —

PRODUCTION RULES (P) TERMINALS (T) NON-TERMINALS (N)
waeStart : wae SEMI
LBRACE waeStart
wae : NUMBER RBRACE wae
wae : ID PLUS alist
wae : LBRACE PLUS wae wae RBRACE MINUS
wae : LBRACE MINUS wae wae RBRACE TIMES
wae : LBRACE TIMES wae wae RBRACE DIV
wae : LBRACE DIV wae wae RBRACE ID
wae : LBRACE IF wae wae wae RBRACE WITH
wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE IF
NUMBER
alist : LBRACE ID wae RBRACE SEMI
alist : LBRACE ID wae RBRACE alist

wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE

wae : LBRACE PLUS wae wae RBRACE //// //<;//////(///////////(////:;////



Grammars and Derivations

The sentences of the language are generated through a sequence of applications of the production
rules, starting with the start symbol. This sequence of rule applications is called a derivation. In a
derivation, each successive string is derived from the previous string by replacing one of the
nonterminals with one of that nonterminal’s definitions.

Consider the string: {+ x y};

Here is a derivation for this string (starting from waeStart we are able to derive {+ x y};)

waeStart _
= wae using rule waeStart : wae SEMI
’ .
= { + wae wae } ; using rule wae : LBRACE PLUS wae wae RBRACE
= { + x wae } ; using rule wae : ID
! using rule wae : ID
= {+xy1};

We have highlighted in red the non-terminal that is being replaced/rewritten. Since we have a
successful derivation for the string, {+ x y}; we say that the string, {+ x y}; isa “valid” WAE

expression.
17



Another Derivation Example

Consider the string: {WITH {{x 5} {y 2}} {+ x y}};
Here is a derivation for this string:
Production Rule Used

waeStart waeStart : wae SEMI

= wae; wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE
= { WITH { alist } wae }; alist : LBRACE ID wae RBRACE alist

= { WITH {{ x wae } alist } wae }; wae : NUMBER

= {WITH {{x 5}alist } wae }; alist : LBRACE ID wae RBRACE

=> {WITH{{x5}{ywae}}wae}; wae : NUMBER

= {WITH {{x 5 H y 2 lltwael; wae : LBRACE PLUS wae wae RBRACE

> {WITH{{x5}{y2}}{+waewae}} wae : ID

=> {WITH{{x5}{y2}}{+xwael}; wae : ID

= IWITH{{x§iiy2} 5+ Xy}



Derivations continued

Each string in a derivation, including the start symbol, is referred to as a sentential form.
A derivation continues until the sentential form does not contain any non-terminals.

A leftmost derivation is one in which the replaced nonterminal is always the leftmost
nonterminal.

In addition to leftmost, a derivation may be rightmost or in an order that is neither leftmost
nor rightmost.

Derivation order has no effect on the language generated by a grammar.

By choosing alternative rules with which to replace non-terminals in the derivation, different
sentences in the language can be generated.

By exhaustively choosing all combinations of choices, the entire language can be generated.



PRODUCTION RULES:

<assign> <id> = <expr>
<expr> <id> + <expr>
<expr> <id> * <expr>
<expr> : ( <expr> )
<expr> <id>

<id> : A

<id> : B

<id> : C

Another Grammar Example

A leftmost derivation for A

LR T 2 R 2
I

<assign>

<id> = <expr>

= <expr>

= <id> * <expr>
= B * <expr>
=B * <expr> )
* <id> + <expr> )
A + <expr> )

A+ <id> )

(
(
*
(
(

W W wWw w

A+ C)

B+* (A+C)



Parse Tree

- A derivation can be represented graphically in the form of a parse tree.
- The root node is the start symbol of the grammar.

- Each step of the derivation expands a non-terminal node by creating one child node for each
symbol in the RHS of the production rule used in the derivation.

- Every internal node is labeled with a non-terminal and every leaf is labeled with a terminal.

- A pre-order traversal of just the leaves is called the yield and should equal the terminal string
whose derivation the parse tree represents.

waeStart
waeStart /\
= wae ; wae
= { + wae wae } ;
= { + x wae } ; { + wae wae }
= {+xy};

X y

21



Parse Tree: Another Example

waeStart waeStart
= wae; /\
= { WITH { alist } wae }; wae |

= { WITH {{ x wae } alist } wae };
= {WITH {{x 5}alist } wae };

=>{WITH{{x5}{ywae}}wae} |'
= {WITH{{x5}{y2}}wae}k { x wae } alist { + wae wae }

= {WITH{{x5}{y2}}{+ wae wae} }; ‘ A | |

5 wae X
= {WITH{{x5}{y2}}{+xwae}} tY | } y

> {WITH{{x5}{y2}}{+xy}} 2

{ with { alist } wae }

22



LR R T I N 2

Parse Tree: A third example

<assign> <assign>
<id> = <expr> M\
A = <expr> <id> = <expr>
A = <id> * <expr> ’ /I\
A = B * <expr> A <id> * <expr>
A =B * ( <expr> ) | /\
A =B * ( <id> + <expr> ) B ( <expr> )
A =B * ( A+ <expr> ) /\
A=B* (A + <id> ) <id> + <expr>
A=B* (A+C) ‘

A <id>

23 C



PLY Parser

- In addition to the Lexer (ply.lex) module, PLY also provides a Parser module (ply.yacc)
- The Parser module requires a CFG specification of the language
- PLY automatically generates a Parser program from the CFG.

- The Parser program calls the PLY Lexer object (created by the Lexer module) to read tokens
from the input string.

- The Parser program verifies that the input string can be derived from the grammar by trying
to construct a parse tree.

- PLY also provides the ability to evaluate “attribute” values for non-terminals in the parse tree.
This ability can be used by the programmer to construct a data structure that stores the
essential parts of the input string. This data structure is sometimes called an abstract syntax
tree

24



PLY Parser continued
- Each grammar rule is defined by a Python function where the docstring to that function

contains the grammar rule.

- The Python function name must begin with a p_ and it is typical to include the non-terminal
on the LHS of the grammar rule as part of the function name.

- Here is one such function for the WAE Grammar:

def p wae 8(p):
'wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE’

#A A
#p[0] pll] pl[2] p[3] pl4] p[5]1 pl6] pl[7]
p[0] = ['with',p[4],p[6]]

- As can be observed, the function is named p wae 8. The 8 is used to indicate that this is
the 8th grammar rule with wae on the LHS.

- The second line is the docstring containing the grammar rule.

- The function has one parameter, p, which is a list of “values” of each of the symbols in the
grammar rule. p[o] holds the value of the LHS non-terminal and p[1], p[2], etc. hold the values
of the symbols of the RHS, as shown in the two comment lines.

25



PLY Parser continued

def p wae 8(p):

'wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE’

# A A A A
#p[0] pl[l] pl[2] p[3]
p[0] = ['with',p[4],p[6]]

- For RHS tokens or terminals, the "value" of the
corresponding p[i] is the same as the t.value
attribute assigned in the lexer module.

- For RHS non-terminals, the value of the corresponding
p[i] is determined by whatever is placed in p[ 0] in the
function for the rule that is used in the derivation to
replace this non-terminal. This value can be anything,
decided by the programmer.

26

A

A A A

pl[4] p[5] pl[6] Pp[7]
plil value of pli]
p[1] Re
p[2] “with”
p[3] {
p[4] |value assigned to p[0O] in one of the alist-functions
p[5] “}
p[6] |value assigned to p[O] in one of the wae-functions
p[7] “}




WAE Parser

WAEParser.py
import ply.yacc as yacc def p wae 4(p):
'wae : LBRACE MINUS wae wae RBRACE'
pl0] = ['=",p[31,pP[4]]

from WAELexer import tokens

def p waeStart(p):
def p wae 5(p):
LBRACE TIMES wae wae RBRACE'

'waeStart : wae SEMI'
p[0] = p[1] 'wae :
pl0] = ['*',p[3]1,p[41]]
def p wae 1(p):
'wae : NUMBER' def p wae 6(p):
p[0] = ['num’,p[1]] 'wae : LBRACE DIV wae wae RBRACE'
p[0] = ['/',p[3],pP[4]]
def p wae 2(p):
'‘'wae : ID' def p wae 7(p):
p[0] = ['id',p[1]] 'wae : LBRACE IF wae wae wae RBRACE'
p[0] = ['1f',p[3]1,p[4]1,pP[5]]
def p wae 3(p):
'wae LBRACE PLUS wae wae RBRACE' def p wae 8(p):
= ['+',p[3]1,p[4]] 'wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE'
p[0] = ['with',p[4],p[6]]

p[0] =
27



WAE Parser (continued)

WAEParser.py (continued)

def p alist 1(p):
: LBRACE ID wae RBRACE'

'alist :
p[0] = [[pP[2],pP[31]11]1]

'alist :
[[p[2],p[3]]1] + pPI[5]

p[0] =

def p alist 2(p):
LBRACE ID wae RBRACE alist'

def p error(p):
print("Syntax error in input!")

parser = yacc.yacc()

WAE.py (main program)

from WAEParser import parser

def read input():

result =
while True:
data = input('WAE: ').strip()
if ';' in data:

°
I

i data.index(';")
result += data[0:i+1]
break

else:
result += data + ' '

return result

def main():
while True:
data = read input()
if data == 'exit;':
break
try:
tree = parser.parse(data)

except Exception as inst:
print(inst.args[0])
continue

28
print(tree)



Grammar (subset) Input String

waeStart : wae SEMI {+xy }
wae : ID Parse Tree
wae : LBRACE PLUS wae wae RBRACE
[“+’,[*id’,'x"],[“id’,'y"' 1]
Derivation
waeStart
= wae ; waeStart : wae SEMI
= { + wae wae } ; [‘4+7,[*id’, ‘]//id','y']] ™~
PLY functions (subset) DL rmes D
unctions (subset > {+xvy } ;
// / \
def p_waestart(p): ¢« LBRACE PLUS wae wae RBRACE
'waeStart : wae SEMI'
p[0] = p[1]
[ 1d’ X' [ 1d
def p wae 2(p):
'wae : ID'

p[0] = [‘id’,p[1]] | |
ae : ID wae :
def p wae 3(p):

'wae : LBRACE PLUS wae wae RBRACE' @ @
p[0] = ['"+',p[3],pP[4]]

29



PLY: In a nutshell

Token Specification
(Reg Exp)
WAELexer.py

7

Language
Specification
(CFG)
WAEParser.py

PLY

Lexer
(lexer object)

Input {+ 3 4}

V

N

Parser
(parser object)

Main Program
WAE.py

30

v

Output 7



