
DatalogQ Interpreter 

The DatalogQ interpreter is invoked using the following terminal command:

$ java DLOGQ company

Here $ is the command prompt and company is the name of the database (as well as the
name of the directory where the database files are stored). This command assumes that
the company directory is present in the same directory where this command is issued.
Of course, one can issue this command in a different directory by providing the full path
to the database directory.

The interpreter responds with the following prompt:

DLGQ>

At this prompt the user may enter the query execution command @file-name or type
the exit command, where file-name contains the DatalogQ query. Each command is to
be terminated by a semi-colon. Even the exit command must end with a semi-colon.

Datalog Syntax 

Datalog is a rule-based logical query language for relational databases. The syntax of
Datalog is defined below:

An atomic formula is of one of the following two forms:

1. p(x1, ..., xn) where p is a relation name and x1, ..., xn are either
constants or variables or

2. x <op> y where x and y are either constants or variables and <op> is one of
the six comparison operators: <, <=, >, >=, =, !=.

A Datalog rule is of the form:

 p :- q1, ..., qn.

Here p is an atomic formula and q1, ..., qn are either atomic formulas or negated
atomic formulas (i.e. atomic formula preceded by not). p is referred to as the head of the
rule, and q1, ..., qn are referred to as sub-goals.

A Datalog rule p :- q1, ..., qn. is said to be safe if

1. Every variable that occurs in a negated sub-goal also appears in a positive sub-
goal, and

2. Every variable that appears in the head of the rule also appears in the body of the
rule.

A Datalog query is set of safe Datalog rules with at least one rule having the answer
predicate in the head. The answer predicate collects all answers to the query.

Note: Variables that appear only once in a rule can be replaced by anonymous variables
(represented by underscores). Every anonymous variable is different from all other
variables.

Datalog Query Examples 

The following are examples of Datalog queries against the company database:

Query 1: Get names of all employees in department 5 who work more than 10 hours/week
on the ProductX project.

 answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,5),
 works_on(S,P,H),
 projects('ProductX',P,_,_),
 H >= 10.

Query 2: Get names of all employees who have a dependent with the same first name as
their own first names.

 answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_),
 dependent(S,F,_,_,_).

Query 3: Get the names of all employees who are directly supervised by Franklin Wong.

 answer(F,M,L) :-
 employee(F,M,L,_,_,_,_,_,S,_),
 employee('Franklin',_,'Wong',S,_,_,_,_,_,_).

Query 4: Get the names of all employees who work on every project.

 temp1(S,P) :-
 employee(_,_,_,S,_,_,_,_,_,_),
 projects(_,P,_,_).
 temp2(S,P) :-
 works_on(S,P,_).
 temp3(S) :-
 temp1(S,P), not temp2(S,P).
 answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_), not temp3(S).

In this query, temp1(S,P) collects all combinations of employees, S, and projects, P;

temp2(S,P) collects only those pairs where employee S works on project P;
temp3(S) collects employees, S, who do not work for a particular project (these
employees should not be in the answer). A second negation in the final rule gets the
answers to the query.

Query 5: Get the names of employees who do not work on any project.

 temp1(S) :-
 works_on(S,_,_).
 answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,_), not temp1(S).

Query 6: Get the names and addresses of employees who work for at least one project
located in Houston but whose department does not have a location in Houston.

 temp1(S) :-
 works_on(S,P,_), project(_,P,'Houston',_).
 temp2(S) :-
 employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
 answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp1(S), temp2(S).

temp1(S) collects employee S who work for a project located in Houston;
temp2(S) collects employees S whose department do not have a location in Houston;
the final rule intersects the two temp predicates to get the answer to the query.

Query 7: Get the names and addresses of employees who work for at least one project
located in Houston or whose department does not have a location in Houston. (Note: this
is a slight variation of the previous query with 'but' replaced by 'or').

 temp1(S) :-
 works_on(S,P,_),
 project(_,P,'Houston',_).
 temp2(S) :-
 employee(_,_,_,S,_,_,_,_,_,D),
 not dept_locations(D,'Houston').
 answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp1(S).
 answer(F,M,L,A) :-
 employee(F,M,L,S,_,A,_,_,_,_), temp2(S).

Query 8: Get the last names of all department managers who have no dependents.

temp1(S) :-
 dependent(S,_,_,_,_).
answer(L) :-

 employee(_,_,L,S,_,_,_,_,_,_),
 department(_,_,S,_),
 not temp1(S).

To execute the above queries using the Datalog interpreter, each must be placed in a
separate file with a $ symbol appearing at the end of the file. Assume that the queries are
placed in files named q1, q2, …, q8. The following is a terminal session showing
the execution of the above queries:

[raj@tinman ch2]$ java DLOGQ company
type "help;" for usage...
Message: Database Provided: Database Directory is ./company
DLOG> @q1;

answer(F,M,L) :-
 employee(F,M,L,S,_,_,_,_,_,5),
 works_on(S,P,H), H >= 10,
 projects('ProductX',P,_,_).$

ANSWER(F:VARCHAR,M:VARCHAR,L:VARCHAR)

Number of tuples = 2
John:B:Smith:
Joyce:A:English:

DLOG> exit;
Exiting...

DatalogQ Syntax 

DatalogQ is an extension of Datalog that allows for universally-quantified conditions to
be introduced in the body of rules using “complex” terms.

Complex Terms:

In addition to constants and variables that are available in Datalog, DatalogQ allows
complex terms of the form:

[*]:p(t1,…,tn)
[*,*]:p(t1,…,tn)
[*,*,*]:p(t1,…,tn)
…
…

and

[#]:p(t1,…,tn)
[#,#]:p(t1,…,tn)
[#,#,#]:p(t1,…,tn)
…
…

In each of these complex terms, the number of *s (or #s) in p(t1,…,tn) must be equal
the number of *s (or #s) before the colon.

Semantics:

Example 1: Consider a simple relational schema:

movie(TITLE)
actor(NAME)
acts(TITLE,NAME)
direct\or(TITLE,NAME)

and the following predicate:

acts([*]:movie(*),A)

The complex term appears as the first argument of the predicate and the predicate is to be
interpreted as follows:

{A | (∀T)(movie(T) acts(T,A))}

i.e. it expresses the set of actor names who act in “all” movies present in the movie table.
This set can be evaluated using the relational algebraic expression:

acts(T,A) ÷ movie(T)

Now consider the following predicate:

acts([#]:director(#,’Spielberg’),A)

This predicate involves the “#” complex term and is to be interpreted as:

{A | (∀T)(acts(T,A) director(T,’Spielberg’))}

i.e. it expresses the set of actor names who act “only” in Spielberg directed movies. This
set can be evaluated using the following relational algebraic expression:

project[A](acts(T,A)) –
project[A](acts(T,A) join
(select[D<>’Spielberg](directs(T,D))))

 
DatalogQ Queries 
 

Consider the following relational schema:

movie(TITLE)
director(TITLE,DIRECTOR)
actor(TITLE,ACTOR)

(1) Get actors who act in all movies.

answer(A) :- actor([*]:movie(*),A).

(2) Get actors who do not act in all movies.

answer(A) :- actor(T,A), not actor([*]:movie(*),A).

(3) Get directors such that every actor has acted in at least one of his or her movies.

aperson(A) :- actor(T,A).
r(A,D) :- actor(T,A), director(T,D).
answer(D) :- r([*]:aperson(*),D).

(4) Get pairs of actors who have acted in exactly the same set of movies.

answer(A1,A2) :-
 actor([*]:actor(*,A2),A1),
 actor([*]:actor(*,A1),A2),
 A1 < A2.

