e EIn R P e

1 T

210 CHAPTER 4. SYNTAX ANALYSIS

1. Separating the syntactic structure of a language into lexical and non-
lexical parts provides a convenient way of modularizing the front end of
a compiler into two manageable-sized components.

2. The lexical rules of a language are frequently quite simple, and to describe
them we do not need a notation as powerful as grammars.

3. Regular expressions generally provide a more concise and easier-to-under-
stand notation for tokens than grammars.

4. More efficient lexical analyzers can be constructed automatically from
regular expressions than from arbitrary grammars.

There are no firm guidelines as to what to put into the lexical rules, as op-
posed to the syntactic rules. Regular expressions are most useful for describing
the structure of constructs such as identifiers, constants, keywords, and white
space. Grammars, on the other hand, are most useful for describing nested
structures such as balanced parentheses, matching begin-end’s, corresponding
if-then-else’s, and so on. These nested structures cannot be described by regular

expressions.

4.3.2 Eliminating Ambiguity

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
As an example, we shall eliminate the ambiguity from the following “dangling-
else” grammar:

stmt — if expr then stmi
| if expr then stmi else stmi (4.14)
| other

Here “other” stands for any other statement. According to this grammar, the
compound conditional statement

if E; then 5; else if E; then 5; else 53

stmt

if exrpr then stm¢ else Emt
E S //s \\\\
if ezpr then stmi else simi
B Sa Sa

Figure 4.8: Parse tree for a conditional statement

&

i-',_

.

-
A
[kE
[

:

i o e A ot

b J PR St

4.3. WRITING A GRAMMAR 211

has the parse tree shown in Fig. 4.8.! Grammar (4.14) is ambiguous since the
string

if £y then if E; then S, else S, (4.15)

has the two parse trees shown in Fig. 4.9.

//St mt\\
if expr then stmi
E
if ea:pr\ then stmi else stmi

Es S Sa

if etpr then stmt else simi
AN AN
El -____.._.-- / \, ""H-\.___H 52
if expr then stmt

E, S

Figure 4.9: Two parse trees for an ambiguous sentence

In all programming languages with conditional statements of this form, the |
first parse tree is preferred. The general rule is, “Match each else with the
closest, unmatched then.”? This disambiguating rule can theoretically be in-
corporated directly into a grammar, but in practice it is rarely built into the
productions.

Example 4.16: We can rewrite the dangling-else grammar (4.14) as the fol-
lowing unambiguous grammar. The idea is that a statement appearing between
4 then and an else must be “matched”; that is, the interior statement must
not end with an unmatched or open then. A matched statement is either an
if-then-else statement containing no open statements or it is any other kind
of unconditional statement. Thus, we may use the grammar in Fig. 4.10. This
grammar generates the same strings as the dangling-else grammar (4.14), but
it allows only one parsing for string (4.15); namely, the one that associates each
else with the closest previous unmatched then. O

The subscripts on E and § are just to distinguish different occurrences of the same
honterminal, and do not imply distinct nonterminals.

*We should note that C and its derivatives are included in this class. Even though the C
family of languages do not use the keyword then, its role is played by the closing parenthesis
for the condition that follows if.

s -

EE T e e

-L:'-i':_,_ﬁ,;,_.hgx-;_;:.-_

V3
T
.-\

P L

g

.-_::-.-v-"- "':‘-5'3'_-'

T
\

ey i Ko S

T L R

212 CHAPTER 4. SYNTAX ANALYSIS

stmt — matched.stmi
| open_stmt
matched_stmt — if expr then matched_stmt else matched_stmt
| other
open_stmt — if ezpr then stmt
| if expr then matched.stmt else open_stmt

Figure 4.10: Unambiguous grammar for if-then-else statements

4.3.3 Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal A such that there is a
derivation A 5 Aa for some string «. Top-down parsing methods cannot
handle left-recursive grammars, so a transformation is needed to eliminate teft
recursion. In Section 2.4.5, we discussed immediate left recursion, where there
is a production of the form A — Aa. Here, we study the general case. In
Section 2.4.5, we showed how the left-recursive pair of productions 4 — Aa | 8
could be replaced by the non-left-recursive productions:

A - BA'
A ad | e

without changing the strings derivable from A. This rule by itself suffices for
many grammars.

Example 4.17: The non-left-recursive expression grammar (4.2), repeated
here,

T ESTE

E'-+TF
T—»FT
T">xFT

E:>&; Fo(E) | id

is obtained by eliminating immediate left recursion from the expression gram-
mar (4.1). The left-recursive pair of productions E -+ E + T | T are replaced
by E-+TFE and E' - 4+ T E' | ¢. The new productions for T and T' are
obtained similarly by eliminating immediate left recursion. O

Immediate left recursion can be eliminated by the following technique, which
works for any number of A-productions. First, group the productions as

A-Aoy | Aaz | | Aam | Bi | B2 | - | Pn

where no §; begins with an A. Then, replace the A-productions by

4.3. WRITING A GRAMMAR

A= BA | BA | o | Bud
A5 A | agA’ | - | apd’ | €

The nonterminal A generates the same strings as before but is no longer left
recursive. This procedure eliminates all left recursion from the A and A’ pro-
ductions (provided no a; is €), but it does not eliminate left recursion involving
derivations of two or more steps. For example, consider the grammar

S—sA4a| b
A= Adc | Sd | ¢

(4.18)

The nonterminal S is left recursive because S = Aa = Sda, but it is not
immediately left recursive.

Algorithm 4.19, below, systematically eliminates left recursion from a gram-
mar. It is guaranteed to work if the grammar has no cycles (derivations of the
form A & A) or e-productions (productions of the form A — ¢). Cycles can be

eliminated systematically from a grammar, as can e-productions (see Exercises
4.4.6 and 4.4.7).

Algorithm 4.19: Eliminating left recursion.

INPUT: Grammar G with no cycles or e-productions.
i —————

OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting
non-left-recursive grammar may have e-productions. 0O

1) arrange the nonterminals in some order 4;, Az,... , An.
2) for (eachifrom1ton){
3) for { each j from 1 toi—1) {
4) replace each production of the form A; — A;v by the
productions A; = 81y | d2v | -+ | 8y, where
Aj =61 | d2) -+ | & are all current A;-productions
5) 1
6) eliminate the immediate left recursion among the A;-productions
N}

I Figure 4.11: Algorithm to eliminate left recursion from a grammar

The procedure in Fig. 4.11 works as [ollows. In the frst iteration for { =
1, the outer for-loop of lines {2) through (7) eliminates any immediate left
recursion among A,-productions. Any remaining 4; productions of the form,
A = 4A;a must therefore have I > 1. After the i — 1st iteration of the outer for-
loop, all nonterminals Ay, where k < i, are “cleaned”; that is, any production
Ar —= Ajo. must have ! > k. As a result, on the ith iteration, the inner loop

214 CHAPTER 4. SYNTAX ANALYSIS

of lines (3) through (5) progressively raises the lower limit in any production
A; = Anca, until we have m > . Then, eliminating immediate left recursion
for the A; productions at line (6) forces m to be greater than i.

Example 4.20: Let us apply Algorithm 4.19 to the grammar (4.18). Techni-
cally, the algorithin is not guaranteed to work, because of the e-production, but
in this case, the production 4 — € turns out to be harmless.

We order the nonterminals 5, 4. There is no immediate left recursion
among the S-productions, so nothing happens during the outer loop for i = 1.
For i = 2, we substitute for 5in A — S d to obtain the following A-productions.

AsAc| Aad | bd | ¢

Eliminating the immediate left recursion among these A-productions yields the
following grammar.

S—sAa | b i
Asbda | A 3

A scA | adAd | ¢« b
- :

4.3.4 Left Factoring

Left factoring is a grammar transformation that is useful for producing a gram-
mar suitable for predictive, or top-down, parsing. When the choice between

two alternative A-productions is not clear, we may be able to rewrite the pro- b
ductions to defer the decision until enough of the input has been seen that we Sl

can make the right choice.
For example, if we have the two productions

stmt — if expr then stmt else stmt
| if expr then stmi

on seeing the input if, we cannot immediately tell which production to choose
to expand stmt. In general, if A = af; | @ff» are two A-productions, and the
input begins with a nonempty string derived from a, we do not know whether

to expand A to o) or aff;. However, we may defer the decision by expanding i ';
A to aA’. Then, after seeing the input derived from «, we expand A’ to 5y or g 1
to fa. That is, left-factored, the original productions become :

A = B | B2

Algorithm 4.21: Left factoring a grammar.
INPUT: Grammar G.

OUTPUT: An equivalent left-factored grammar.

4.3. WRITING A GRAMMAR 215

METHOD: For each nonterminal A, find the longest prefix o common to two
or more of its alternatives. If o # ¢ ie., there is a nontrivial common
prefix — replace all of the A-productions 4 — a3, | Bz | - | @By | v, where
7 represents all alternatives that do not begin with a, by

A= ad | v
A=pf | B2 - | B

Here A" is a new nonterminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix. O

Example 4.22: The following grammar abstracts the “dangling-else” prob-
fem:

S—2iEtS | iEtSeS | a
E-=b (4.23)

Here, i, t, and e stand for if, then, and else; E and § stand for “conditional ik
expression” and “statement.” Left-factored, this grammar becomes: !

S3iEtSS |a
S'—=eS | ¢ {4.24)
E—=b

Thus, we may expand S to iEt$S' on input ¢, and wait until :E£S has been
seen to decide whether to expand S’ to eS or to e. Of course, these grammars
are both ambiguous, and on input e, it will not be clear which alternative for
5" should be chosen. Example 4.33 discusses a way out of this dilemma. O

4.3.5 Non-Context-Free Language Constructs

A few syntactic constructs found in typical programming languages cannot be
specified using grammars alone. Here, we consider two of these constructs,
using simple abstract languages to illustrate the difficulties.

Example 4.25: The language in this example ahstracts the problem of check-
ing that identifiers are declared before they are used in a program. The language
consists of strings of the form wew, where the first w represents the declaration
of an identifier w, ¢ represents an intervening program fragment, and the second
w represents the use of the identifier.

The abstract language is L, = {wcw | w is in (a|b)*}. L, consists of
all words composed of a repeated string of a’s and s separated by ¢, such
as aabcaab. While it is beyond the scope of this book to prove it, the non-
context-freedom of Ly directly implies the non-context-freedom of programming
o languages like G and Java, which require declaration of identifiers before their -
y use and which allow identifiers of arbitrary length.

s For this reason, a grammar for C or Java does not distinguish among identi-
5 5 fiers that are different character strings. Instead, all identifiers are represented

e i de el |

216 CHAPTER 4. SYNTAX ANALYSIS

by a token such as id in the grammar. In a compiler for such a language,
the semantic-analysis phase checks that identifiers are declared before they are

used. O

"Example 4.26: The non-context-free language in this example abstracts the

problem of checking that the number of formal parameters in the declaration ofa
function agrees with the number of actual parameters in a use of the function.
The language consists of strings of the form a”b™c"d™. (Recall a™ means a
written n times.) Here a” and 5™ could represent the formal-parameter lists of
two functions declared to have n and m arguments, respectively, while ¢® and
d™ represent the actual-parameter lists in calls to these two functions.

The abstract language is Ly = {a"™c*d™ | n > 1 and m > 1}. That is, L»
consists of strings in the language generated by the regular expression a*b*e*d*
such that the number of a’s and ¢'s are equal and the number of d’s and d’s are

equal. This language is not context free.
Again, the typical syntax of function declarations and uses does not concern

itself with counting the number of parameters. For example, a function call in
C-like language might be specified by

stmt — id (expr_list)
expr_list — exprlist , expr
| expr

with suitable productions for ezpr. Checking that the number of parameters in
a call is correct is usually done during the semantic-analysis phase. O

4.3.6 Exercises for Section 4.3

Exercise 4.3.1: The following is a grammar for regular expressions over sym-
bols a and b only, using + in place of | for union, to avoid conflict with the use
of vertical bar as a metasymbol in grammars:

rezpr — rexpr + rierm | rierm
rierm — rterm rfactor | tfactor
rfactor - rfactor = | rprimary
rprimary — alb

a) Left factor this grammar.

b) Does left factoring make the grammar suitable for top-down parsing?

¢) In addition to left factoring, eliminate left recursion from the original
grammar,

d) Is the resulting grammar suitable for top-down parsing?

Exercise 4.3.2: Repeat Exercise 4.3.1 on the following grammars:

R

e T

T
fope o 1o

s i

oo

2 T oo

a s,

* b

4.4. TOP-DOWN PARSING

a) The grammar of Exercise 4.2.1.

b) The grammar of Exercise 4.2.2(a).

¢) The grammar of Exercise 4.2.2(c).

d} The grammar of Exercise 4.2.2(e).

e) The grammar of Exercise 4.2.2(g).

! Exercise 4.3.3: The following grammar is proposed to remove the “dangling-
else ambiguity” discussed in Section 4.3.9:

stmt — if expr then stmt LA

matchedStmt I
matchedStmt — if expr then matchedStmt else stmi
| other

Show that this grammar is still ambiguous,

4.4 Top-Down Parsing

Top-down parsing can be viewed as the problem of constructing a parse tree for
the input string, starting from the root and creating the nodes of the parse tree
in preorder (depth-first, as discussed in Section 2.3.4). Equivalently, top-down
parsing can be viewed as finding a leftmost derivation for an input string.

o Example 4.27: The sequence of parse trees in Fig. 4.12 for the input id+id+id
i 1 is a top-down parse according to grammar (4.2), repeated here:

E - TE i
E' = +TE| ¢ |
T - FT (4.28)

T" = *xFT | ¢
F - (E)|id

This sequence of trees corresponds to a leftmost derivation of the input. 0O

sl kicammniiton Loy

At each slep of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say 4. Once an A-production %
is chosen, the rest of the parsing process consists of “matching” the terminal |2
symbols in the production body with the input string. |44
= The section begins with a, general form of top-down parsing, called recursive- |
; descent parsing, which may require backtracking to find the correct A-produc-
tion to be applied. Section 2.4.2 introduced predictive parsing, a special case of
recursive-descent parsing, where no backtracking is required. Predictive parsing
chooses the correct A-production by looking ahead at the input a fixed number
of symbols, typically we may look only at one (that is, the next input symbol)

218 CHAPTER 4. SYNTAX ANALYSIS

E F E F E E
m A A m A E A Z A
T F T E' T E E T E
A\ /1 A 1 /1N
Torr ikl fr-rF
id id ¢ id ¢
E E E
m SN m N ay
gang \T\ PR g \T\ E e \T\ E
+ + +
TN LT N AN
1 € 1 € | 1 € J /!\'\
id id « £ T
E E E
i ay im aw im SN
Frd e b e R S g
+ +
N SN LT AN
S I AN (7 (N R % N
id = Jl'*" T id = ;T‘ flf" id « F T
id id ¢ id ¢

Figure 4.12: Top-down parse for id + id * id

For example, consider the top-down parse in Fig. 4.12, which constructs
a tree with two nodes labeled E'. At the first E' node (in preorder), the
production £’ — +T E’ is chosen; at the second E’ node, the production E' — ¢
is chosen. A predictive parser can choose between E'-productions by looking
at the next input symbol.

The class of grammars for which we can construct predictive parsers looking
k symbols ahead in the input is sometimes called the LL{k) class. We discuss the
LL(1} class in Section 4.4.3, but introduce certain computations, called FIRST
and FOLLOW, in a preliminary Section 4.4.2. From the FIRST and FOLLOW
sets for a grammar, we shall construct “predictive parsing tables,” which make
explicit the choice of production during top-down parsing. These sets are also
useful during bottom-up parsing,

In Section 4.4.4 we give a nonrecursive parsing algorithm that maintains
a stack explicitly, rather than implicitly via recursive calls. Finally, in Sec-
tion 4.4.5 we discuss error recovery during top-down parsing.

L . T

ti

ucts
the
-+ €
fing

<ing

the
R3T
OW
1ake
also

ains
sec-

4.4, TOP-DOWN PARSING

4.4.1 Recursive-Descent Parsing

void A() {
1) Choose an A-production, 4 — X1Xo--- Xy
2) for (i=1tok){
3) if (X; is a nonterminal)
4} call procedure X;();
5) else if (X; equals the current input symbol ¢)
6) advance the input to the next symbol;
7} else /* an error has occurred * /i

Figure 4.13: A typical procedure for a nonterminal in a top-down parser

General recursive-descent may require backtracking;
repeated scans over the input. However, backtracking is
programming language constructs, so backtracking pa
quently. Even for situations like natural language parsi
very efficient, and tabular methods such as the dyna
rithm of Exercise 4.4.9 or the method of Earley (see
are preferred,

To allow backtracking, the code of Fig. 4.13 needs to be
cannot choose a unique A-production at line (1), so we must try each of severa)
productions in some order. Then, failure at line (7) is not ultimate failure, but
Suggests only that we need to return to line (1} and try another A-production.
Only if there are no more A-productions to try do we declare that an input

error has been found. In order to try another A-production, we need to be able
to reset the input pointer to where it was when we first reached line (1). Thus,
a local variable is needed to store this input poiuler for future use.

that is, it may require
rarely needed to parse
ISers are not seen fre-
ng, backtracking is not
mic programming algo-
the bibliographic notes)

modified. First, we

Example 4.29: Consider the grammar

S = cAd
A = ab|oa

To construct a parse tree top-down for the input string w
tree consisting of a single node labeled S, and the input P
the first symbol of w. S has only one production, so we us

= cad, begin with a
ointer pointing to ¢,
e it to expand S and

220 CHAPTER 4. SYNTAX ANALYSIS

obfain the tree of Fig. 4.14(a). The leftmost leaf, labeled ¢, matches the first
symbol of input w, so we advance the input pointer to a, the second symbol of :
w, and consider the next leaf, labeled A. E

TN, AN, I
/N, | i

(a) (b) ()

c

o

.

Figure 4.14: Steps in a top-down parse

Now, we expand A using the first alternative 4 — a b to obtain the tree of
Fig. 4.14(h). We have a match for the second input symbol, a, so we advance

the input pointer to d, the third input symbol, and compare d against the next) :
leaf, labeled b. Since b does not match d, we report failure and go back to 4 to bt s
see whether there is another alternative for A that has not been tried, but that 2 ;
might produce a match. - 2

In going back to A, we must reset the input pointer to position 2, the E: f
position it had when we first came to A, which means that the procedure for A ; t
must store the input pointer in a local variable. X

The second alternative for A produces the tree of Fig. 4.14(c). The leaf ¢ & u

a matches the second symbol of w and the leaf d matches the third symbol.
Since we have produced a parse tree for w, we halt and announce successful
completion of parsing. O

A left-recursive grammar can cause a recursive-descent parser, even one
with backtracking, to go into an infinite loop. That is, when we try to expand :
a nonterminal 4, we may eventually find ourselves again trying to expand A -
without having consumed any input. ;

4.4.2 FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided by two :
functions, FIRST and FOLLOW, associated with a grammar G. During top- -
down parsing, FIRST and FOLLOW allow us to choose which production to x

apply, based on the next input symbol. During panic-mode error recovery, sets EI
of tokens produced by FOLLOW can be used as synchronizing tokens. ¢

Define FIRST(a), where o is any string of grammar symboals, to be the set i;l
of terminals that begin strings derived *from o. If &« & ¢ then e is also in ’
FIRST(a). For example, in Fig. 4.15, A = c¢v, so ¢ is in FIRST({4). un

For a preview of how FIRST can be used during predictive parsing, consider
two A-productions 4 — a [8, where FIRST(a) and FIRST{f3) are disjoint sets.
We can then choose between these A-productions by looking at the next input

4.4. TOP-DOWN PARSING

Figure 4.15: Terminal ¢ is in FIRST(A) and a is in FOLLOW(A)

symbol a, since @ can be in at most one of FIRST(@) and FIRST(f), not hoth.
For instance, if g is in FIRST(f3) choose the production 4 —s B. This idea will
be explored when LL(1) grammars are defined in Section 4.4.3.

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can
appear immediately to the right of 4 in some sentential form; that is, the set
of terminals @ such that there exists a derivation of the form § & aAaf, for
some « and 3, as in Fig. 4.15. Note that there may have been symbols between
A and a, at some time during the derivation, but if so, they derived ¢ and
disappeared. In addition, if 4 can be the rightmost symbol in some sentential
form, then $ is in FOLLOW(A); recall that § is a special “endmarker” symbol
3 that is assumed not to be a symbol of any grammar.

; To compute FIRST(X) for all grammar symbols X » apply the following rules
until no more terminals or ¢ can be added to any FIRST set.

[Y

L

L. If X is a terminal, then FIRST(X y={X).

2. If X is a nonterminal and X — 1Yz --- Y, is a production for some k>1,
then place a in FIRST(X) if for some ¢, @ is in FIRST(Y;), and ¢ is in all of
FIRST(Y1),... ,FIRST(Y;_1); that is, ¥; ---Yi_; 2 €. If e is in FIRST(Y;)
for all j = 1,2,... k, then add € to FIRST(X). For example, everything
in FIRST(Y]) is surely in FIRST(X). If Y; does not derive €, then we add

nothing more to FIRST(X), but if ¥; = €, then we add FIRST(Y:), and
50 on.

S e

3. It X — ¢ is a production, then add ¢ to FIRST(X).

Now, we can compute FIRST for any string X1 X, - X,, as follows. Add to
FIRST(X1 X5 - -+ X,,) all non-e symbols of FIRST(X;). Also add the non-e sym-
E bols of FIRST(X,), if € is in FIRST(X;); the non-¢ symbols of FIRST(X3), if ¢ is
1 " In FIRST(X)) and FIRST{X>); and so on. Finally, add ¢ to FIRST(X, X, - - - Xn)
3 i, for all 4, € is in FIRST(X;).

To compute FOLLOW(A} for all nonterminals A, apply the following rules
until nothing can be added to any FOLLOW set.

1. Place § in FOLLOW(S), where S is the start symbol, and $ is the input
right endmarker. :

=Tl T

o it e e o o e e

222

2.

3.

CHAPTER 4. SYNTAX ANALYSIS
If there is a production A — aBg, then everything in FIRST(f) except ¢
is in FOLLOW(B).

If there is a production 4 — aB, or a production A — aBj, where
FIRST() contains €, then everything in FOLLOW(A) is in FOLLOW(B).

Example 4.30: Consider again the non-left-recursive grammar (4.28). Then:

1.

0

FIRST(F) = FIRST(T) = FIRST(E) = {(,id}. To see why, note that the
two productions for F have bodies that start with these two terminal
symbols, id and the left parenthesis. T has only one production, and its
body starts with F. Since F does not derive ¢, FIRST(T) must be the
same as FIRST(F). The same argument covers FIRST(E).

. FIRST(E') = {+,€}. The reason is that one of the two productions for E’

has a body that begins with terminal +, and the other’s body is e. When-
ever a nonterminal derives ¢, we place ¢ in FIRST for that nonterminal.

. FIRST(T') = {x,€}. The reasoning is analogous to that for FIRST(E").

. FOLLOW(E) = FOLLOW(E'}) = {),$}. Since E is the start symbol,

FOLLOW(E) must contain $. The production body (E) explains why the
right parenthesis is in FOLLOW(E). For E’, note that this nonterminal
appears only at the ends of bodies of E-productions. Thus, FOLLOW(E')
must be the same as FOLLOW(E).

. FOLLOW(T) = FOLLOW(T") = {+,),$}. Notice that T appears in bodies

only followed by E’. Thus, everything except € that is in FIRST{E’) must
be in FOLLOW(T'); that explains the symbol +. However, since FIRST(E")
contains € {i.e., E' = ¢), and E' is the entire string following T in the
bodies of the E-productions, everything in FOLLOW(FE) must also be in
FOLLOW(T). That explains the symbols $ and the right parenthesis. As
for T', since it appears only at the ends of the T-productions, it must be
that FOLLOW(T") = FOLLOW(T).

. FOLLOW(F) = {+,*,),$}. The reasoning is analogous to that for T in

point (5).

4.4.3 LL(1) Grammars

Predictive parscrs, that is, recursive-descent parsers needing no backtracking,
can be constructed for a class of grammars called EL(1). The first “L” in LL(1)
stands for scanning the input from left to right, the second “L” for producing
a leftmost derivation, and the “1” for using one input symbol of lookahead at

each step to make parsing action decisions.

4.4 TOP-DOWN PARSING

Transition Diagrams for Predictive Parsers

Transition diagrams are useful for visualizing predictive parsers. For exam-
ple, the transition diagrams for nonterminals E and E' of grammar {4.28)
appear in Fig. 4.16(a). To construct the transition diagram from a gram-
mar, first eliminate left recursion and then left factor the grammar. Then,
for each nonterminal A4,

1. Create an initial and final (return) state.

2. For each production A -~ X, X, - - X}, create a path from the initial
to the final state, with edges labeled X1, X5,..., X;. If A — €, the
path is an edge labeled e.

Transition diagrams for predictive parsers differ from those for lexical
analyzers. Parsers have one diagram for each nonterminal. The labels of
edges can be tokens or nonterminals. A transition on a token (terminal)
means that we take that transition if that token is the next input symbol.
A transition on a nonterminal A is a call of the procedure for A.

With an LL(1) grammar, the ambiguity of whether or not to take an
e-edge can be resolved by making e-transitions the default choice.

Transition diagrams can be simplified, provided the sequence of gram-
mar symbols along paths is preserved. We may also substitute the dia-
gram for a nonterminal A4 in place of an edge labeled A. The diagrams in
Fig. 4.16(a) and (b) are equivalent: if we trace paths from E to an accept-
ing state and substitute for E', then, in both sets of diagrams, the grammar
symbols along the paths make up strings of the form T+ T +- .. +T. The
diagram in (b) can be obtained from (a) by transformations akin to those
in Section 2.5.4, where we used tail-recursion removal and substitution of
procedure bodies to optimize the procedure for a nonterminal.

The class of LL(1) grammars is rich enough to cover most programming
constructs, although care is needed in writing a suitable grammar for the source
language. For example, no left-recursive or ambiguous grammar can be LL(1).

A grammar G is LL(1) if and only if whenever 4 — o | B are two distinct
productions of G, the following conditions hold:

1. For no terminal a do both & and 8 derive strings beginning with a.

2. At most one of & and £ can derive the empty string.

LIS ¢, then a does not derize any string beginning with a terminal
in FOLLOW(A). Likewise, if @ = ¢, then 8 does not derive any string -
beginning with a terminal in FOLLOW(A).

s e,

Figure 4.16: Transition diagrams for nonterminals E and E' of grammar 4.28

The first two conditions are equivalent to the statement that FIRST(a) and
FIRST(f) are disjoint sets. The third condition is equivalent to stating that if
€ is in FIRST(S), then FIRST(a) and FOLLOW(A) are disjoint sets, and likewise
if € is in FIRST(a).

Predictive parsers can be constructed for LL(1) grammars since the proper
production to apply for a nonterminal can be selected by looking only at the
current input symbol. Flow-of-control constructs, with their distinguishing key-
words, generally satisfy the LL(1) constraints. For instance, if we have the
productions

stmt — if (expr) stmt else stmt
| while (expr) stmi
| { stmtlist }

then the keywords if, while, and the symbol { tell us which alternative is the
only one that could possibly succeed if we are to find a statement.

The next algorithm collects the information from FIRST and FOLLOW sets
into a predictive parsing table M[4, 4], a two-dimensional array, where A is a
nonterminal, and @ is a terminal or the symbol $, the input endmarker. The
algorithm is based on the following idea: the production A4 — « is chosen if
the next input symbol a is in FIRST(a). The only complication occurs when
a = ¢ or, more generally, & = e. In this case, we should again choose 4 — e,
if the current input symbol is in FOLLOW(4), or if the § on the input has been
reached and $ is in FOLLOW(A4).

Algorithm 4.31: Construction of a predictive parsing table.

INPUT: Grammar G.

OUTPUT: Parsing table A{.

METHOD: For each production 4 — « of the grammar, do the following:
1. For each terminal a in FIRST{A), add A — « to M[A, g].

2. If € is in FIRST(a), then for each terminal b in FOLLOW(A), add A = &
to M[A,b]. If € is in FIRST(@) and $ is in FOLLOW(A), add 4 — «a to
M[A,$] as well.

Aoy

e e e iy s et e 2

ey o 0

e

ts

he

if
2n
&,
en

e b e T A
bk

N R s

4.4. TOP-DOWN PARSING 225

If, after performing the above, there is no production at all in M[A, a], then
set M[A,a] to error (which we normally represent by an empty entry in the
table). O

Example 4.32: For the expression grammar (4.28), Algorithm 4.31 produces
the parsing table in Fig. 4.17. Blanks are error entries; nonblanks indicate a
production with which to expand a nonterminal.

NON - INPUT SYMBOL
TERMINAL id n " () 3
E E—-TFE E—-TE
¥ o4 E' - +TF E w¢|E —e¢
T T - FT’ T FT
T T —w¢ |T —sFT' T —e|T —e
F Foid F - (B)

Figure 4.17: Parsing table M for Example 4.32

Consider production £ — TFE'. Since
FIRST(TE') = FIRST(T) = {(,id}

this production is added to M[E, (] and M[E,id]. Production E' = +TF' is
added to M[E’, +] since FIRST(+TE') = {+}. Since FOLLOW(E') = {),$},
production E' — ¢ is added to M[E',)] and M[E',$]. O

Algorithm 4.31 can be applied to any grammar G to produce a parsing table
M. For every LL(1) grammar, each parsing-table entry uniquely identifies a
production or signals an error. For some grammars, however, M may have
some entries that are multiply defined. For example, if G is left-recursive or
ambiguous, then M will have at least one multiply defined entry. Although left-
recursion elimination and left factoring are easy to do, there are some grammars
for which no amount. of alteration will produce an LL(1) grammar.

The language in the following example has no LL(1) grammar at all.

Example 4.33: The following grammar, which abstracts the dangling-else
problem, is repeated here from Example 4.22:

S = iEtSS |a
5 o eS|e
E o b

The parsing table for this grammar appears in Fig. 4.18. The entry for M[$’ ,€]
contains both S" — eS and S’ — €.

The grammar is ambiguous and the ambiguity is manifested by a choice in
what production to use when an e (else) is seen. We can resolve this ambiguity

CHAPTER 4. SYNTAX ANALYSIS

NON - INPUT SYMBOL
TERMINAL . i

S S = iEtSS’

Sl

E-b

Figure 4.18: Parsing table M for Example 4.33

by choosing §' —+ eS. This choice corresponds to associating an else with the
closest previous then. Note that the choice §' — ¢ would prevent e from ever
being put on the stack or removed from the input, and is surely wrong. O

4.4.4 Nonrecursive Predictive Parsing

A nonrecursive predictive parser can be built by maintaining a stack explicitly,
rather than implicitly via recursive calls. The parser mimics a leftmost deriva-
tion. If w is the input that has been matched so far, then the stack holds a
sequence of gramimar symbols « such that

*®
S = wa
im

The table-driven parser in Fig. 4.19 has an input buffer, a stack containing a
sequence of grammar symbols, a parsing table constructed by Algorithm 4.31,
and an output stream. The input buffer contains the string to be parsed,
followed by the endmarker $. We reuse the symbol $ to mark the bottom of the
stack, which initially contains the start symbol of the grammar on top of $.

The parser is controlled by a program that considers X, the symbol on top
of the stack, and a, the current input symbol. If X is a nonterminal, the parser
chooses an X-production by consulting entry M [X,a] of the parsing table M.
{Additional code could be executed here, for example, code to construct a node
in a parse tree.) Otherwise, it checks for a match between the terminal X and
current input symbol a.

The behavior of the parser can be described in terms of its configurations,
which give the stack contents and the remaining input. The next algorithm
describes how configurations are manipulated.

Algorithm 4.34: Table-driven predictive parsing.
INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error
indication.

PR

-

e T A e L [

4.4. TOP-DOWN PARSING

o [T T TaT+Te]s)
/

Predictive
Parsing
Program

f

Parsing
Table
M

Figure 4.19: Model of a table-driven predictive parser

METHOD: Initially, the parser is in a configuration with w$ in the input buffer
and the start symbol S of G on top of the stack, above $. The program in

Fig. 4.20 uses the predictive parsing table M to produce a predictive parse for
the input. 0O

set ip to point to the first symbol of w;
set X to the top stack symbol;
while (X # 8) { /* stack is not empty */
if (X is @) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X, a] is an error entry) erron();
else if (M[X,a]=X 5 1Yz ---¥}) {
output the production X — ¥;Y; ... ¥};
pop the stack;
push ¥3,Y, ,,...,¥] onto the stack, with Y] on top;

}

set X' to the top stack symbol;

Figure 4.20: Predictive parsing algorithm

Example 4.35: Consider grammar (4.28); we have already seen its the parsing
table in Fig. 4.17. On input id + id * id, the nonrecursive predictive parser
of Algorithm 4.34 makes the sequence of moves in Fig. 4.21. These moves
correspond to 2 leftmost derivation (see Fig. 4.12 for the full derivation):
E= TE'> FI'E's idT'F'=> idE'= id+TE' = ...
lm im im Im

im Im

CHAPTER 4. SYNTAX ANALYSIS

STACK INPUT ACTION

iy E% id+id«*id$
TE'S id+idxid$ output E - TE'
4 FT'E'$ id+id «id$ output T — FT'
idT'E'S id+id«+id$ output F — id

MATCHED

id T'E'S +id xid$ match id

id E'S +id +id$ output 77 - ¢ .

id + TE'S$ +id +id$ output E' - + TE'

id + TE'S id *id$ match + 3
id -+ FT'E'$ id xid$ output T - FT 5
id + idT'E'S id*id$ output F — id
id + id T'E'S *id§ match id i
id + id * FT'E'$ *id§ output T' — « F7TV :
id +id FT'E'$ id$ match = f
id +id = idT'E'S id$ output F — id [
id + id id T'E'$ $ match id ;
id + id * id E'$ $ output T — ¢

id +id + id $ $ output B — ¢

Figure 4.21: Moves made by a predictive parser on input id + id *id

Note that the sentential forms in this derivation correspond to the input that
has already been matched (in column MATCHED) followed by the stack contents.
The matched input is shown only to highlight the correspondence. For the same
reason, the top of the stack is to the left; when we consider bottom-up parsing,
it will be more natural to show the top of the stack to the right. The input
pointer points to the leftmost symbol of the string in the INPUT column. O

4.4.5 Error Recovery in Predictive Parsing

This discussion of error recovery refers to the stack of a table-driven predictive
parser, since it makes explicit the terminals and nonterminals that the parser
hopes to match with the remainder of the input; the techniques can also be
used with recursive-descent parsing.

An error is detected during predictive parsing when the terminal on top of
the stack does not match the next input symbol or when nonterminal A is on
top of the stack, a is the next input symbol, and M [4,a] is error (i.e., the
parsing-table entry is empty).

Panic Mode

Panic-mode error recovery is based on the idea of skipping symbols on the
the input until a token in a selected set of synchronizing tokens appears. Its

4.4. TOP-DOWN PARSING 229

effectiveness depends on the choice of synchronizing set. The sets should be
chosen so that the parser recovers quickly from errors that are likely to occur
in practice. Some heuristics are as follows:

1. As a starting point, place all symbols in FOLLOW(A) into the synchro-
nizing set for nonterminal A. If we skip tokens until an element of

FOLLOW(A) is seen and pop A from the stack, it is likely that parsing
can continue.

. It is not enough to use FOLLOW(A) as the synchronizing set for A. For
example, if semicolons terminate statements, as in C, then keywords that B
f begin statements may not appear in the FOLLOW set of the nontermi- it
: nal representing expressions. A missing semicolon after an assignment Ll
may therefore result in the keyword beginning the next statement be-
ing skipped. Often, there is a hierarchical structure on constructs in a
language; for example, expressions appear within statements, which ap- i
pear within blocks, and so on. We can add to the synchronizing set of a {8
lower-level construct the symbols that begin higher-level constructs. For
example, we might add keywords that begin statements to the synchro-
i nizing sets for the nonterminals generating expressions.

cid 3. If we add symbols in FIRST(A) to the synchronizing set for nonterminal i
A, then it may be possible to resume parsing according to A if a symbol :
% in FIRST(A) appears in the input. il
ut that 1 _ _ _ |
et 4. If a nonterminal can generate the empty string, then the production de-
ReEI riving € can be used as a default. Doing so may postpone some error
sarsing, detection, but cannot cause an error to be missed. This approach reduces
e input 1 the number of nonterminals that have to be considered during error re-
n O . 3 covery. S
: 5. If a terminal on top of the stack cannot be matched, a simple idea is to
pop the terminal, issue a message saying that the terminal was inserted, f
i and continue parsing. In effect, this approach takes the synchronizing set i
adictive e of a token to consist of all other tokens.
! parser : .
also he g Example 4.36: Using FIRST and roLLOW symbols as synchronizing tokens
: works reasonably well when expressions are parsed according to the usual gram-
t top of o | mar (4.28). The parsing table for this grammar in Fig. 4.17 is repeated in
A is on . Fig. 4.22, with “synch” indicating synchronizing tokens obtained from the
., the . FOLLOW set of the nonterminal in question. The FOLLOW sets for the non-
i 2 terminals are obtained from Example 4.30.
The table in Fig. 4.22 is to be used as follows. If the parser looks up entry
1 M([A, a] and finds that it is blank, then the input symbol is skipped. If the
i entry is “synch,” then the nonterminal on top of the stack is popped in an .
on the attempt to resume parsing. If a token on top of the stack does not match the
rs. Its inpug symbol, then we pop the token from the stack, as mentioned above.

230 CHAPTER 4. SYNTAX ANALYSIS :
NON - INPUT SYMBOL
TERMINAL id + * () 3
E E— TE E - TE'| synch | synch
E E - +TE Ese|lE—se
* T T = FT’ synch T — FT'| synch | synch
T T se [T = +FT T o e|T — e
ot F F—id synch synch F - (E} | synch | synch

Figure 4.22: Synchronizing tokens added to the parsing table of Fig. 4.17

On the erroneous input)id * +id, the parser and error recovery mechanism
of Fig. 4.22 behave as in Fig. 4.23. O

STACK INPUT REMARK
E$)idx+id$ ervor, skip)
E$ id*+id$ idisin FIRST(E)
TE'$ id«+id$§
FI'E'S id++id$
id T'E'§ id«+id $

TE'S$ *+id$§
* FT'E'§ *+id §
FT'E'$ +id8$ error, M[F, +] = synch
T'E'$ +id3$ F has been popped
E'S$ +id$
+TE'$ +id $
TE'$ id$
FT'E'S$ id$
dT'E'$ id$
TE'S $
E'$ 3
$ $

Figure 4.23: Parsing and error recovery moves made by a predictive parser

The above discussion of panic-mode recovery does not address the important
issue of error messages. The compiler designer must supply informative error
messages that not only describe the ervor, they must draw attention to where
the error was discovered.

