

CS103B Handout 18
Winter 2007 February 28, 2007

Finite Automata
Initial text by Maggie Johnson.

Introduction
Several children's games fit the following description: Pieces are set up on a playing board; dice are thrown
(or a wheel is spun) and a number is generated at random. Based on the generated number, the pieces on
the board are rearranged specified by the rules of the game. Then, another child throws or spins and
rearranges the pieces again. There is no skill or choice involved - the entire game is based on the values of
the random numbers.

Consider all possible positions of the pieces on the board and call them states. We begin with the initial
state of the starting positions of the pieces on the board. The game then changes from one state to another
based on the value of the random number. For each possible number, there is one and only one resulting
state given the input of the number, and the prior state. This continues until one player wins and the game
is over. This is called a final state.

Now consider a very simple computer with an input device, a processor, some memory and an output
device. We want to calculate 3 + 4, so we write a simple list of instructions and feed them into the machine
one at a time (e.g., STORE 3 TO X; STORE 4 TO Y; LOAD X; ADD Y; WRITE TO OUTPUT). Each instruction
is executed as it is read. If all goes well, the machine outputs '7' and terminates execution. This process is
similar to the board game. The state of the machine changes after each instruction is executed, and each
state is completely determined by the prior state and the input instruction (thus this machine is defined as
deterministic). No choice or skill is involved; no knowledge of the state of the machine 4 instructions ago is
needed. The machine simply starts at an initial state, changes from state to state based on the instruction
and the prior state, and reaches the final state of writing '7'.

Finite Automata
A general model (of which the previous two examples are instances) of this type of machine is called a
Finite Automaton; 'finite' because the number of states and the alphabet of input symbols is finite;
automaton because the structure or machine (as it is more commonly called) is deterministic, i.e., the change
of state is completely governed by the input.

A finite automata has:
 1) A finite set of states, one of which is designated the initial state or start state, and
 some (maybe none) of which are designated as final states.
 2) An alphabet ∑ of possible input symbols.
 3) A finite set of transitions that tell for each state and for each symbol of the input
 alphabet, which state to go to next.

In the simple computer example, the start state is the original state of the machine before program execution
and the final state is '7' written on the output device. The input alphabet is the set of strings representing
the instructions.

Example 1
Suppose ∑ = {a,b}, the set of states = {x, y, z} with x the start state and z the final state, and we have the
following rules of transition:

 1) from state x and with input a, goto state y.
 2) from state x and with input b, goto state z.
 3) from state y and with input a, goto state x.
 4) from state y and with input b, goto state z.
 5) from state z and with any input, stay at state z.

This is a perfectly defined 'FA' (short for finite automaton) according to the definition above. We now
need to examine what happens to various input strings when presented to this FA. Consider 'aaa': we
begin in state x and goto state y. The next symbol is also an 'a', so from state y we go to state x. Then on
the last 'a', we go from state x back to state y. That's all the input we have - since we do not end up in state
z, the final state, we have an unsuccessful end.

This exercise illustrates how an FA can be used to recognize or accept strings of a particular language. The set
of all strings that leave us in a final state of an FA is called the language accepted or defined by the FA.
'aaa' is not a word in the language defined by the FA given above. This is why FA's are also called language
recognizers.

Now, try 'abba': from state x to state y, from state y to state z, from state z to state z, from state z to state z.
This word is a part of the language defined by this FA. In fact, any input string that has just one or more
will be accepted by this FA. We can define this by the regular expression:

 (a + b)* b (a + b)*

This is a very simple FA. Typically, the list of transition rules can be quite long, so an alternative
representation is frequently used. One method is to use a transition table:

 a b
 start x: y z
 y: x z
 final z: z z

This table has all the information required to define an FA. Even though it is no more than a table of
symbols or a list of rules, we consider an FA to be a machine, i.e., we understand that an FA has dynamic
capabilities. It moves. It processes input. Something goes from state to state as the input is read. One way
to represent an FA that feels more like a machine is a transition diagram:

 2

The vertices are the states, and the edges indicate the input into each state. The start state (there’s always
just one) is explicitly identified, and the final states (also called the accept states) are double circles. This
representation makes it much easier to see that this FA accepts only strings with at least one b in them.
Technically, the states themselves don’t need to be labeled, but very often it helps to label the states with
information about what that state represents. Here, the x, y, and x aren’t all that useful—they’re just
holdovers from the transition table version of the FA. But we can label the states with anything we want,
and all the rest of the examples here will do just that.

Additional Examples

Construct deterministic finite automata accepting each of the following languages:

a.

!

w " a + b()
*

: each a in w is immediately preceded and immediately followed by a b

$
%

&
'
(

b.

!

w " a + b()
*

: w included abab as a substring

$
%

&
'
(

start x y a

a

z

b b

a, b

a,b

a,b a b

b

b

a

a

a

start

b

start a b a b

b a

 3

c.

!

w " a + b()
*

: w has neither aa nor bb as a substring

$
%

&
'
(

d.

!

w " a + b()
*

: w includes both ab and ba as (possibly overlapping) substrings

$
%

&
'
(

All those strings in the language that start with an a have ab before ba. Those strings that
begin with the letter b have ba
before ab. So I viewed this language
as the union of two languages:

!

a
+

b
+
a a + b()

*
+ b

+
a

+
b a + b()

* .

Modeling Step By Step Processes

These finite state machines are useful to illustrating the various degrees of progress one can make toward
any one of a number of goals. The generalization isn’t difficult to follow: rather than framing a computation
in terms of string acceptance or rejection, you can decorate transitions with rolls of a single die, or coin flips,
or steps in an algorithm that ultimately terminates. Here’s a variation on the Laura and Ming problem from
our probability days:

The Game: Abigail, Beatrice, and Christopher keep flipping a fair coin until one of their respective

patterns HHTH, HTHH, or THHH comes up. Draw a deterministic finite state machine
that tracks the progress of the game, where each of three final states corresponds to a win
for one of the three players. (You needn’t draw edges out of the final states, since at that
point the game is over.)

This really isn’t that different at all. It’s really another string acceptance problem where the letters of our
alphabet are H and T. Here’s the automaton that tracks everything for you. By imposing structure on the
step-by-step process, we’re in a better position to answer questions about the probability that one will win
over the other, or the expected number of flips needed before someone wins.

a,b

a b a b

a,b

start

a b

a b

start
a

b

b

a

a,b

a

b

a

b

 4

Notice that the state labels really mean something this time—they’re used to convey the most exciting
stream of flips for the one player closest to winning. A, B, and C are labels that denote that either Abigail,
Beatrice, or Chris won the game. And we don’t bother with transitions out of the final states, even though
the FA is deterministic everywhere else, because the end of the computation comes with the end of the
game, not with the end of some string.

HT
start

∆

T

H

H

T

HH
H

T

TH

H

HHT T

H HTH

THH H

H A

H B

H C

T

T

T

H

T

T

T

 5

