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Languages and Regular Expressions 
 
Theory of Formal Languages 

In the English language, we distinguish between three different identities: letter, word, sentence.  There is 
a certain parallelism between the fact that a group of letters make up a word and a group of words make 
up a sentence.  Not all collections of letters form valid words, and not all collections of words form valid 
sentences. 
 
This situation also exists with programming languages.  Certain strings are recognizable words  (FOR, 
WHILE, IF...).  Certain strings of words are valid sentences in a programming language.  These sentences 
together form a valid program. 
 
To construct a general language theory that unifies all these examples, it is necessary to adopt a definition 
of a "universal language structure", i.e, a structure in which the decision of whether a given string of units 
constitute a valid larger unit is not a matter of guesswork, but is based on explicitly stated rules.  The 
study of such a set of rules operating on a set of symbols is called the Theory of Formal Languages. 
"Formal" in this sense refers to the fact that all the rules for creating valid structures in the language are 
explicitly stated in terms of what strings of symbols can occur.  We are interested in the FORM of the 
string of symbols, not the meaning.  So, our study of formal languages is concerned with language not as a 
method of communication, but as a valid sequence of symbols generated from the application of formal 
rules. 
 
This topic is important because we are now starting to study abstract machine models to get a better idea 
of what computers can and cannot do.  All computers require a program to operate, and all programs are 
written in some language.  The first step in understanding abstract machine models is to study the 
language structures that the machines can and cannot accept as input, and how the machine operates on 
this input. Formal language theory forms the basis for programming languages and compiler construction. 
 
Some Definitions 
• Symbol: this is an abstract entity that we shall not define formally (just as "point" and "line" are note 

defined in geometry).  Letters, digits and punctuation are examples of symbols. 
• An alphabet is a finite set of symbols out of which we build larger structures.  An alphabet is typically 

denoted using the Greek sigma ∑, e.g., ∑ = {0,1}. 
• String: a finite sequence of symbols from a particular alphabet juxtaposed.  For example: a, b, c, are 

symbols and abcb is a string. 
• The empty string, denoted  ∂, is the string consisting of zero symbols.  
• 5) A formal language is the set of strings from some alphabet.  This set of strings is usually denoted as 

∑*, e.g., if ∑ = {1,0} then ∑* = {∂, 0, 1, 00, 01, 10, 11, 000, 001,...}.  This language is called the closure of 
the alphabet (where any possible juxtaposition of symbols from ∑ is a string of the language, including 
∂). The notation is called the Kleene star (after the logician who was one of the original workers in this 
field).  Often, we may use a capital letter to represent a language: L = {∂, 0, 1, 00, 01, 10, 11, 000, 001, ...}. 

 



   

If, for some reason, we want to modify the concept of closure to refer to only the inclusion of non-empty 
strings of a formal language, we use the symbol ∑+.  For example, if ∑ = {x}, then ∑* = {∂, x, xx,  xxx, ...}, 
and   ∑+ = {x, xx, xxx, xxxx, ... }.  This is called the positive closure of ∑. 
 
• Words: strings from a language that represent valid units as specified by the rules of the language. 

"Rich" is a valid word in English; "Xvcns" is not.   
• The length of a string w, denoted |w|, is the number of symbols making up the string.  |∂| = 0. 
• A prefix of a string is any number of leading symbols of that string, and a suffix is any number of 

trailing symbols.  For example, the string abc has prefixes ∂, a, ab, abc; and suffixes ∂, c, bc, abc.  A 
prefix or suffix of a string that is other than the string itself is called a proper prefix or suffix. 

• The concatenation of two strings is the string formed by writing the first and then the second string 
right next to each other, with no intervening spaces.  The concatenation of  dog and house is doghouse.  
Concatenation of two strings w and z is denoted wz. 

• A substring of a string is any sequence of consecutive symbols from the string including ∂.  Substrings 
of abc are ∂, a, b, c, ab, bc, abc. 

 
Regular Expressions 
We need to be very exact in the way we define formal languages.  Therefore, we will specify some 
language-defining symbols.  Consider the language specified in item (5) above: 
 
   ∑ = {x} ∑* = {∂, x, xx, xxx, ...} 
 
Another way of specifying this language is to use the Kleene star directly applied to a symbol: x*.  This is 
interpreted to indicate some sequence of x's (maybe none at all).  
 
   x* =  ∂, x, xx, xxx, xxxx, ...  = ∑* 
 
The Kleene star operator applied to a letter is analogous to applying it to a set as we did earlier. It 
represents an arbitrary concatenation of copies of that letter (maybe 0 copies).  Some other examples: 
 
   ∑ = {a, b} ∑* = {∂, a, b, ab, ba, aaa, bbb, abb, ....} 
   ab* = a, ab, abb, abbb, abbbb, ... 
 
 
   ∑ = {a, b} ∑* = {∂, a, b, ab, ba, aaa, bbb, abb, ....} 
   (ab)* = ∂, ab, abab, ababab, ... 
 
   ∑ = {a, b} ∑* = {∂, a, b, ab, ba, aaa, bbb, abb, ....} 
   a*b* = ∂, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, .... 
 
   ∑ = {a, b} ∑* = {∂, a, b, ab, ba, aaa, bbb, abb, ....} 
   ? =  {∂, a, aa, ab, aaa, aab, aaaa, aaab, abab....}     
 
How would you informally describe this last pattern?   ∂ or any string of a's or b's that starts with an a and 
cannot have 2 or more consecutive b's.  It will be important to be able to recognize and describe the 
patterns defined by regular expressions. 



   

 
Another language-defining symbol is +.  This is interpreted as 'or' in an expression that defines a language. 
 
   ∑ = {a, b, c}  
   ((a + c) b*) =  a, c, ab, cb, abb, cbb, abbb, cbbb, ... 
 
Notice in the above example that either a or c must be included.  ∂ is not a part of this language. 
 
   ∑ = {a, b}  
   (a + b)(a + b)(a + b) = aaa, aab, aba, abb, baa, bab, bba, bbb 
 
The above example shows a finite language that contains all strings of a's and b's of length 3.  We could 
denote this (a + b)3.  If we wanted to refer to the set of all possible strings of a's and b's of any length 
whatsoever: (a + b)*; this includes ∂. 
 
(a + b)* a (a + b)* a (a + b)*  represents the language of all words that have at least two a's embedded in 
any number of a's and b's (maybe none).  Another representation of a language with at least two a's: 
b*ab*a(a + b)*. abbbabb and aaaaa are both words from this language.  Therefore, these two expressions 
are equivalent, meaning they describe the same language. If we wanted all the words with exactly 2 a's, 
one possibility:  b*ab*ab*.  aab, baba, bbbabbbab are all words from this language. 
 
Are the following languages equivalent? (ab)*a and a(ba)*      
      (a* + b)* and (a + b)*     
      (a*b)*a* and a*(ba*)*     
 
Note that ∂ can be used in these expressions too.  Suppose we wanted to define an expression for a 
language with ∑ = {a, b} in which a word is either empty, all b's or else there is an a followed by some b's.  
One possible expression: b* + ab*. The ∂ can be represented by b*.  Another possibility: (∂ + a) b*.  
Deriving this second expressions seems to indicate some kind of distributive law:  ∂b* + ab* = (∂ + a) b*.  
This analogy to algebra should be dealt with suspiciously, since addition in algebra never means choice, 
and algebraic multiplication has properties different than concatenation.  For example, ab = ba in algebra, 
but  ab ≠ ba in formal languages. 
 
All the expressions derived above are called regular expressions.  The set of regular expressions can be 
defined by the following recursive rules:  
 
 1) Every symbol of ∑ is a regular expression 
 2) ∂ is a regular expression 
 3) if r1 and r2 are regular expressions, so are 
 
   (r1)   r1r2  r1 + r2  r1* 
 
 4) Nothing else is a regular expression. 
 
Note that we could include r1+ as a part of this definition, but r1+ = r1r1*, so we can define it with what 
we have. 



   

 
We have one more task concerning regular expressions, and that is to distinguish between the expressions 
themselves and the language associated with a regular expression.  We need one more definition: 
 
If S and T are sets of strings, we define their product ST = { all combinations of a string 
from S concatenated with a string from T } 
 
 M = {∂, x, xx}  N = {∂, y, yy, yyy, yyyy...} 
 MN =  {∂, y, yy, yyy, yyyy... 
  x, xy, xyy, xyyy, xyyyy... 
   xx, xxy, xxyy, xxyyy, xxyyyy...} 
 
Now, we can define the language associated with a regular expression by these rules: 
 
a) The language associated with a regular expression that is just a single letter, is that one-letter word 

alone. 
b) The language associated with  ∂  is {∂}, a one-word language. 
c) If r1 is a regular expression associated with L1 and r2 is a regular expression associated with L1: 

i) (r1)(r2) = L1L2 
ii) r1 + r2 = L1 + L2 
iii) (r1)* = L1* 
 

Can every language be represented by a regular expression?  Every finite language can, because any finite 
language can be represented as a list of all its words separated by +. Infinite languages, however, are a bit 
more complex; we will deal with them later. 
 
Inductions in Formal Languages 
1) Given that S = {xx, xxx}, prove that S+ = xn for n > 1 (i.e., xn e S+) 
 
 P(n) denotes: if S = {xx, xxx}, then S+ = xn for n > 1 
 

base case: when n = 2, x2 = xx; when n = 3, x3 = xxx; both of these strings are in the language. 
inductive hypothesis: Assume that for any n > 3, xn is in S+, prove that xn+1 is in S+. 
 
PROOF: 
There are two possible cases:  

a) at least one xx is used in the string: replace this xx with xxx to get xn+1. 
b) no xx is used, i.e., the string is all xxx: replace one xxx with 2 xx's to get xn+1. 

 
By the principle of mathematical induction, P(n) is true for all n. 

 
2) P(n) denotes: A palindrome is defined as follows: 

a) ∂ is a palindrome. 
b) If a is any symbol then a is a palindrome. 
c) If a is any symbol and x is a palindrome then axa is a palindrome. 
d) Nothing else is a palindrome unless it follows from (a) - (c). 



   

 
A palindrome is a string that reads the same forward and backward.  
 
(This induction will be on the length of z which is a string that reads the same forward as 
backward; we will prove that z's being a palindrome follows from (a) - (c).) 
 
base case: if the length of z is 0, we have ∂ which is defined by (a) to be a palindrome; if the 
length of z is 1, we have a single symbol which is defined by (b) to be a palindrome. 
inductive hypothesis:  Assume that w of some length less than z is a palindrome, show that z is 
also a palindrome. 
 
PROOF:  
If |z| > 1, then z begins and ends with some symbol a.  Thus z = awa where w reads the same 
forward as backward, and is shorter in length than z.  By the induction hypothesis, rules (a)-(c) 
imply that w is a palindrome.  Thus, by rule (c), z = awa is also a palindrome. 
 
By the principle of mathematical induction, P(n) is true for all n. 
 

Other Proofs for Regular Expressions 
Two regular expressions R and T are equivalent if the language defined by R (i.e., the set of strings 
generated by regular expression R) is equal to the language defined by T.  To prove equivalences for 
regular expressions, we use containment proofs from set theory.  That is, if S1 is the set of strings 
generated by regular expression R, and S2 is the set of strings generated by regular expression T, we must 
prove that S1 ⊆ S2 and S2 ⊆ S1.  Both directions are necessary to prove equality of sets.   
 


