it

&t
£,

to

if
T
it
sle

o

i
B

W

L e L

e
Ty T

e e

il o bl]

PRERT e |
o

Gy

!
i
s
.
-
b

4.5. BOTTOM-UP PARSING

! Exercise 4.4.10: Show how, having filled in the table as in Exercise 4.4.9, H
we can in O(n) time recover a parse tree for aja;---a,. Hint: modify the { b

table so it records, for each nonterminal 4 In each table entry Ty;, some pair of

nonterminals in other table entries that justified putting A in Tj;.

! Exercise 4.4.11: Modify your algorithm of Exercise 4.4.9 so that it will find
for any string, the smallest number

error a single character) n
of the underlying gramm

r

of insert, delete, and mutate errors (each
eeded to turn the string into a string in the langu

age

stmt - if e then stme stmitTail
| while e do stmt
| begin list end
| =
stmiTail — else stmt
| €
list — stmt listTail
bstTail ; list
- €

Figure 4.24: A grammar for certain kinds of statements

! Exercise 4.4.12: In Fig. 4.24 is a grammar for certain statem

take e and s to be terminals standing
statements,” respectively. If we resolve the conflict regarding expansion of

the optional “clse” (nonterminal stmtTail) by preferring to consume an else

from the input whenever We see one, we can build a predictive parser for this
grammar. Using the idea of synchronizing symbols described in Section 4.4.5:

ents. You may
for conditional expressions and “other

a} Build an error-correcting predictive parsing table for the grammar.

b) Show the behavior of your parser on the following inputs:

(3) ifethen s : if e then s end
(ii} while e do begin s ; if ¢ then s ; end

4.5 Bottom-Up Parsing

A bottom-up parse corresponds to the constructi
string beginning at the leaves (the bottom) and

on of a parse tree for an input 5
working up towards the root

234 CHAPTER 4. SYNTAX ANALYSIS

id = id F % id T % id T+ F T E
- | i | PR I B
id F zlr id T + }l? s S
id id F id TxF i one of
| | o a deri
id Il? id] u Fig. 4
id I
Figure 4.25: A bottom-up parse for id *id i 1 This ¢
¥ 4.5.2
: a bottom-up parse of the token stream id # id, with respect to the expression i s Bottor
| ; grammar (4.1). i oathe
S This section introduces a general style of bottom-up parsing known as shift- il the bo
i reduce parsing. The largest class of grammars for which shift-reduce parsers can . reverss
i be built, the LR grammars, will be discussed in Sections 4.6 and 4.7. Although 4 For
£l it is too much work to build an LR parser by hand, tools called automatic parser during
!ir] generators make it easy to construct efficient LR, parsers from suitable gram- £ in Fig.
i mars. The concepts in this section are helpful for writing suitable grammars i " not a b
:‘ to make effective use of an LR parser generator. Algorithms for implementing E would .
L.,' parser generators appear in Section 4.7. £ B Thus,
|I : : not be
i 4.5.1 Reductions Sens
'i We can think of bottom-up parsing as the process of “reducing” a string w to ﬂ
the start symbol of the grammar. At each reduction step, a specific substring .
I matching the body of a production is replaced by the nonterminal at the head L F
i of that production. e
The key decisions during bottom-up parsing are about when to reduce and e
about what production to apply, as the parse proceeds. o
gl i i
3 Example 4.37: The snapshots in Fig. 4.25 illustrate a sequence of reductions; :
E : the grammar is the expression grammar {4.1}. The reductions will be discussed
g in terms of the sequence of strings " Forr
| in the |
s id«id, Fxid, Txid, T+ F, T, E . | right-se
Ei: .' string f
£ The strings in this sequence are formed from the roots of aill the subtrees in the e the pres
g snapshots. The sequence starts with the input string id+id. The first reduction = A Noti
_!:- produces F = id by reducing the leftmost id to F, using the production F' — id. i symbols
i The second reduction produces T * id by reducing F to T. 5 Note we
i Now, we have a choice between reducing the string T, which is the body | | be ambi
g of E = T, and the string consisting of the second id, which is the body of i is unam
$ F — id. Rather than reduce T to E, the second id is reduced to T, resulting i one han
4 in the string T % F'. This string then reduces to T. The parse completes with : ? A i

the reduction of T to the start symbol E. O G 3 That is,

o
|
B |

R £

LR L T T T K

--'.Ti' =

is unambiguous, then every right-
one handle.

Th

=

4.5. BOTTOM-UP PARSING 235

By definition, a reduction is th
in a derivation, a nonterminal in
one of its productions). The goal
a derivation in reverse. The fol]
Fig. 4.25:

e reverse of a step in a derivation (recall that
a sentential form is replaced by the body of
of bottom-up parsing is therefore to construct
owing derivation corresponds to the parse in

E=>T:~T*F:>T*id=>F*id:id*id

This derivation is in fact a rightmost derivation.

4.5.2 Handle Pruning

Bottom-up parsing during a left-to-ri
most derivation in reverse. Informall
the body of a production, and whos
reverse of a rightmost derivation.

For example, adding subscripts to the tokens id for clarity, the handles
during the parse of id, * idy according to the expression grammar (4.1) are as
in Fig. 4.26. Although T is the body of the production E — T, the symbol T is
not a handle in the sentential form T xidy. If T were indeed replaced by F, we
would get the string E'x id2, which cannot be derived from the start symbol E.

Thaus, the leftmost substring that matches the body of some production need
not be a handle.

ght scan of the inpul constructs a right-
¥, a “handle” is a substring that matches
e reduction represents one step along the

RIGHT SENTENTIAL FORM HANDLE REDUCING PrRODUCTION

id1 *id2 idl Foid
Fxidsy F T—>F

T #idy id, Fid
TxF T+F E-Tx F

Figure 4.26: Handles during a parse of id; « id,

Formally, if § & Ay = afw, as in Fig. 4.27, then production 4 — g

in the position fo]i(’)nwing a E?a handle of afw. Alternatively, a handle of a
right-sentential form 7 is a production 4 — B and a position of v where the
string # may be found, such that replacing at that position by A produces
the previous right-sentential form in a rightmost derivation of .

Notice that the string w to the right of the handle must contain only terminal
symbols. For convenience, we refer to the body § rather than 4 — Basa, handle.
Note we say “a handle” rather than “the handle,” because the grammar could
be ambiguous, with more than one rightmost derivation of afw. If a grammar
sentential form of the grammar has exactly

A rightmost derivation in reverse can be obtained by

“handle pruning.”
at is, we start with a string of terminals w to be parsed.

If w is a sentence

236 CHAPTER 4. SYNTAX ANALYSIS

s
'
' E
A i Upon
VAR co‘:n 1
B w P
@ i parser
E o ramn
Figure 4.27: A handle A — 2 in the parse tree for afw = =
of the grammar at hand, then let w = 7, where -y, is the nth right-sentential :‘v
form of some as yet unknown rightmost derivation !
.-.
S=m=>mn=>p=> = Ta-1= Yo =W
rm ™m T rm Tm I'.'
To reconstruct this derivation in reverse order, we locate the handle Br in o3

fn and replace B, by the head of the relevant production 4, — 8, to obtain ¥
the previous right-sentential form +,_;. Note that we do not yet know how i
handles are to be found, but we shall see methods of doing so shortly. i

We then repeat this process. That is, we locate the handle 8,1 in Yn-1 and o Fi
reduce this handle to obtain the right-sentential form v,_5. If by continuing this
process we produce a right-sentential form consisting only of the start symbol

S, then we halt and announce successful completion of parsing. The reverse of i Wh

. . . . - . g possibl

the sequence of productions used in the reductions is a rightmost derivation for g d(4

the input string. g & and (4)

: .' 1. §

4.5.3 Shift-Reduce Parsing E 2. R

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds 3
grammar symbols and an input buffer holds the rest of the string to be parsed. &

As we shall see, the handle always appears at the top of the stack just before 1 3.4
it is identified as the handle. aF 4 E
We use 8 to mark the bottom of the stack and also the right end of the '
input. Conventionally, when discussing bottom-up parsing, we show the top of | The
the stack on the right, rather than on the left as we did for top-down parsing. E the han
Initially, the stack is empty, and the string w is on the input, as follows: I fact car

in any 1

STACK INPUT ¥ case (1)

3 wl hody 81

i the bod:

During a left-to-right scan of the input string, the parser shifts zero or more be some
input symbols onto the stack, until it is ready to reduce a string 8 of grammar i In ot

symbols on top of the stack. It then reduces 3 to the head of the appropriate
production. The parser repeats this cycle until it has detected an error or until
the stack contains the start symbol and the input is empty:

Aal

~in
ain
oW

‘his
bol
a2 of
for

slds
sed.
fore

the
p of
ing.

1w0re
mar
iate
intil

-.."'._.._'- -

L o Ry B TE 1R

4.5. BOTTOM-UP PARSING

STACK INPUT
$s $

Upon entering this configuration, the parser halts and announces successful
completion of parsing. Figure 4.28 steps through the actions a shift-reduce

parser might take in parsing the input string id, *id; according to the expression
grammar (4.1).

STACK INPUT ACTION

% id; *id> 3 shif

§id, *id2$ reduce by F — id
$F *idy $ reduce by T = F
$T xid2 § shift

$T « idy § shift

$T xid, $ reduce by F - id
$T«F § reduceby T - TxF
$T $ reduceby ES T
$E $ accept

Figure 4.28: Configurations of a shift-reduce parser on input id; *id,

While the primary operations are shift and reduce, there are actually four

possible actions a shift-reduce parser can make: (1) shift, (2) reduce, (3) accept,
and (4) error.

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of
the stack. Locate the left end of the string within the stack and decide
with what nonterminal to replace the string,.

3. Accept. Announce successful completion of parsing.
4. Error. Discover a syntax error and call an error recovery ronutine.

The use of a stack in shift-reduce parsing is justified by an important fact:
the handle will always eventually appear on top of the stack, never inside. This
fact can be shown by considering the possible forms of two successive steps
in any rightmost derivation. Figure 4.29 illustrates the two possible cases. In
case (1), A is replaced by ABy, and then the rightmost nonterminal B in the
body BBy is replaced by 7- In case (2), A is again expanded first, but this time

the body is a string y of terminals only. The next rightmost nonterminal B wili
be somewhere to the left of .

In other words:

(1) S5 adz= afBByz = afyyz
r*m rm rm

(2) S= aBrdAz= aBzyz = ayzyz
rm ™ T

|gee
|Ed

238 CHAPTER 4. SYNTAX ANALYSIS

S S
] Y
B B A
/N \ __/
a B v y =z a v zT ¥y z
Case (1) Case (2)

Figure 4.29: Cases for two successive steps of a rightmost derivation

Consider case (1) in reverse, where a shift-reduce parser has just reached the
configuration

STACK INnPUT
$apy yz$

‘The parser reduces the handle v to B to reach the configuration
$aBB yz$

The parser can now shift the string y onto the stack by a sequence of zero or
more shift moves to reach the configuration

$aBBy z$

with the handle 8By on top of the stack, and it gets reduced to A.
Now consider case (2). In configuration

$ay ryz$

the handle v is on top of the stack. After reducing the handle + to B, the parser
can shift the string 2y to get the next handle y on top of the stack, ready to be
reduced to A4:

S$aBzy z$

In both cases, after making a reduction the parser had to shift zero or more
symbols to get the next handle onto the stack. It never had to go into the stack
to find the handle.

4.5.4 Conflicts During Shift-Reduce Parsing

There are context-free grammars for which shift-reduce parsing cannot be used.
Every shift-reduce parser for such a grammar can reach a configuration in which
the parser, knowing the entire stack contents and the next input symbol, cannot
decide whether to shift or to reduce (a shift/reduce conflict), or cannot decide

wl
50
ca

of
in

) >
sid

If +

we

bel
foll
to
to ¢

ous
shif
exp
pars:

dle,
tern
illus

Exa
nam
guag
by p
tran
are «
para
prod

id(ic
a shi

239

a reduce/reduce conflict). We now give

cally, these grammars are not in the LR(k) class of grammars defined in Section
4.7; we refer to them as non-LR grammars, The & in LR (k) refers to the number
of symbols of lookahead on the input. Grammars used in compiling usually fall
in the LR(1) class, with one symbol of lookahead at most,

i ! Example 4.38: An ambiguous grammar can never be LR. For example, con-
i sider the dangling-else grammay (4.14) of Section 4.3:
¥

.] el stmt — if expr then stmt :
oy | if ezpr then stmy else stmi
i

| other 8
If we have a shift-reduce parser in configuration |
2N i
i ; STAack INPUT
i -+ if ezpr then st else ... §
i

we cannot tell whether if exp
below it on the stack. Here th

i to stmt, or it might be correct to shift else and th

“t to complete the alternative if expr then stmt else

1 Note that shift-redyuce parsing can be ada
i Ous grammars, such as the if-then-

en to look for another stmt
stmt.
pted to parse certain ambigu-

else grammar above. If we resolve the
; shift/reduce conflict on else in favor of shifting, the parser wilj behave as we
¥

P | €Xpect, associating each else with the previons unmatched then, We discuss
' parsers for such ambiguous grammars in Section 4.8. DO

¥ Another common setting for conflicts occurs when we know we have a han-
i dle, but the stack contents and the next input symbol are insufficient to de-

B termine which production should be used in 4 reduction. The next example
i illustrates this situation,
]

have a lexical analyzer that returns the token
Suppose also that our lan-

S t0 generate lists of actyal

Our grammar might therefore have (among others
=] o

Productions such as those in Fig. 4.30.

A statement beginning with pii
id(id, id) to the Parser. After shifti
a shift-reduce parser would be in con

»J) would appear as the token stream

ng the first three tokens onto the stack,
figuration

£ e e ey

-

PR S e gy g - ey

i B iy

240 CHAPTER 4. SYNTAX ANALYSIS

(1) stmt — id (perameter_list)

(2) strnt — expr := expr

(3) parameter_list — parameter_list , parameter
(4) paremeter_list — parameter

(5) parameter — id

(6) ezpr — id (ezprlist)

)] expr — id

(8) expr list — expr.list , expr

9) expr list — ezpr

Figure 4.30: Productions involving procedure calls and array references

STACK INPUT
- id (id ,id) ---

It is evident that the id on top of the stack must be reduced, but by which
production? The correct choice is production (5) if p is a procedure, but pro-
duction {7) if p is an array. The stack does not tell which; information in the
symbol table obtained from the declaration of p must be used.

One solution is to change the token id in production (1) to procid and to
use a more sophisticated lexical analyzer that returns the token name procid
when it recognizes a lexeme that is the name of a procedure. Doing so would
require the lexical analyzer to consult the symbol table before returning a token.

I we made this modification, then on processing p{i,j) the parser would
be either in the configuration

STACK INPUT
-.- proeid (id s 1d) -

or in the configuration above. In the former case, we choose reduction by
production (5); in the latter case by production (7). Notice how the symbol
third from the top of the stack determines the reduction to be made, even
though it is not involved in the reduction. Shift-reduce parsing can utilize
information far down in the stack to guide the parse. O

4.5.5 Exercises for Section 4.5

Exercise 4.5.1: For the grammar S — 0 S 1| 0 1 of Exercise 4.2.2(a)},
indicate the handle in each of the following right-sentential forms:

a) 00OLLL.
b) 00S11.

Exercise 4.5.2: Repeat Exercise 4.5.1 for the grammar § -+ SS+[SS*|a
of Exercise 4.2.1 and the following right-sentential forms:

