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a) S55+ax*+.

b) S5 +axa+.

¢) aaa*a+ 4. L

Exercise 4.5.3: Give bottom-

up parses for the following input strings and
grammars:

a) The input 000111 according to the grammar of Exercise 4.5.1.

b) The input aaa *a + + according to the grammar of Exercise 4.5.9.

4.6 Introduction to LR Parsing: Simple LR

The most prevalent type of bottom-up parser today is based on a concept called
LR(k) parsing; the “L” is for left-to-right scanning of the input, the “R” for
constructing a rightmost derivation in reverse, and the k for the number of
input symbols of lookahead that are used in making parsing decisions. The
cases k =0 or k = 1 are of practical interest, and we shall only consider LR
parsers with k < 1 here. When (k) is omitted, % is assumed to be 1.

This section introduces the basic concepts of LR, parsing and the easiest
g method for constructing shift-reduce parsers, called “simple LR” (or SLR, for
: short). Some familiarity with the basic concepts is helpful even if the LR
| parser itself is constructed using an automatic parser generator. We begin with
ik “items” and “parser states;” the diagnostic output from an LR, parser generator
4 r typically includes parser states, which can be used to isolate the sources of
iR parsing conflicts.

Section 4.7 introduces two, more complex methods  canonical-LR. and
LALR - that are used in the majority of LR parsers.

4.6.1 Why LR Parsers?

LR parsers are table-driven, much like the nonrecursive LL parsers of Sec-

tion 4.4.4. A grammar for which we can construct a parsing table using one of

the methods in this section and the next is said to be an LR grammar. Intu-

itively, for a grammar to be LR it is sufficient that a left-to-right shift-reduce

ke parser be able to recognize handles of right-sentential forms when they appear
on top of the stack.

LR parsing is attractive for a variety of reasons:

e LR parsers can be constructed io recognize virtually all programming-
language constructs for which context-free grammars can be written. Non-
LR context-free grammars exist, but these can generally be avoided for
typical programming-language constructs.




¢ The LR-parsing method is the most general nonbacktracking shift-reduce
parsing method known, yet it can be implemented as efficiently as other,
more primitive shift-reduce methods (see the bibliographic notes).

e e e

¢ An LR parser can detect a syntactic error as soon as it is possible to do
80 on a left-to-right scan of the input.

¢ The class of grammars that can be parsed using LR methods is a proper
superset of the class of grammars that can be parsed with predictive or
LL methods. For a grammar to be LR(k), we must be able to recognize
the occurrence of the right side of a production in a right-sentential form,
with k input symbols of lookahead. This requirement is far less stringent
than that for LL{(k) grammars where we must be able to recognize the
use of a production seeing only the first & symbols of what its right side
derives. Thus, it should not be surprising that LR grammars can describe
more languages than LL grammars.

The principal drawback of the LR method is that it is too much work to
construct an LR, parser by hand for a typical programming-language grammar.
A specialized tool, an LR parser generator, is needed. Fortunately, many such
generators are available, and we shall discuss one of the most commonly used
ones, Yacc, in Section 4.9. Such a generator takes a context-free grammar and
automatically produces a parser for that grammar, If the grammar contains
ambiguities or other constructs that are difficult to parse in a left-to-right scan
of the input, then the parser generator locates these constructs and provides
detailed diagnostic messages.

4.6.2 Items and the LR(0) Automaton

How does a shift-reduce parser know when to shift and when to reduce? For
example, with stack contents §T and next input symbol * in Fig. 4.28, how
does the parser know that T on the top of the stack is not a handle, so the
appropriate action is to shift and not to reduce T to E?

An LR parser makes shift-reduce decisions by maintaining states to keep
track of where we are in a parse. States represent sets of “items.” An LR{0)
item (item for short) of a grammar G is a production of G with a dot at some
position of the body. Thus, production A — XYZ yields the four items

A— -XYZ
A= XYZ
A= XY.Z
A= XYZ.

The production A — € generates only one item, 4 — - .

Intuitively, an item indicates how much of a production we have seen at a
given point in the parsing process. For example, the item A — -XY Z indicates
that we hope to see a string derivable from XY Z next on the input. Ttem
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Representing Item Sets

A parser generator that produces a bottom-up parser may need to rep-
resent items and sets of items conveniently. Note that an item ¢an be
represented by a pair of integers, the first of which is the number of one
of the productions of the underlying grammar, and the second of which is
the position of the dot. Sets of items can be represented by a list of these
pairs. However, as we shall see, the necessary sets of items often include
“closure” items, where the dot is at the beginning of the body. These can
always be reconstructed from the other items in the set, and we do not
have to include them in the list.

A — XY Z indicates that we have just seen on the input a string derivable from
X and that we hope next to see a string derivable from Y Z. Item 4 = XY 2.
indicates that we have seen the body XY Z and that it may be time to reduce
XY Z to A.

One collection of scts of LR(0) items, called the canonical LR(0) collection,
provides the basis for constructing a deterministic finite automaton that is used
to make parsing decisions. Such an automaton is called an LR(0) automaton.

In particular, each state of the LR(0) automaton represents a set of items in
the canonical LR(0) collection. The automaton for the expression grammar
(4.1), shown in Fig. 4.31, will serve as the running example for discussing the
canonical LR(0} collection for a grammar.

To construct the canonical LR(0) collection for a grammar, we define an
augmented grammar and two functions, CLOSURE and GOTO. If G is a grammar
with start symbol .S, then G’, the augmented grammar for G, is G with a new
start symbol S” and production 8’ — S. The purpose of this new starting
production is to indicate to the parser when it should stop parsing and announce
acceptance of the input. That is, acceptance occurs when and only when the
parser is about to reduce by 5’ — 5.

Closure of Item Sets

If I is a set of items for a grammar G, then CLOSURE(J) is the set of items
constructed from I by the two rules:

1. Initially, add every item in I to CLOSURE(J).

2. If A — a-Bf is in CLOSURE(I) and B — v is a production, then add the
item B — -y to CLOSURE(J), if it is not already there. Apply this rule
until no more new items can be added to CLOSURE(J).

3Technically, the automaton misses being deterministic according to the definition of Sec-
tion 3.6.4, becanse we do not have a dead state, corresponding to the empty set of items. As
a result, there are some state-input pairs for which no next state exists.
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Figure 4.31: LR(0) automaton for the expression grammar (4.1)

Intuitively, A = a-Bj in CLOSURE(J) indicates that, at some point in the
parsing process, we think we might next see a substring derivable from Bf
as input. The substring derivable from Bf will have a prefix derivable from
B by applying one of the B-productions. We therefore add items for all the
B-productions; that is, if B — ¥ is a production, we also include B — -y in
CLOSURE({).

Example 4.40: Consider the augmented expression grammar:

E' -+ E

E - E+T | T
T o TxF | F
E — (E)]|id

If I'is the set of one item {{E’ — -EJ]}, then CLOSURE(J) contains the set
of items Iy in Fig. 4.31.
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To see how the closure is computed, E' — -E is put in CLOSURE(I) by
rule (1}. Since there is an E immediately to the right of a dot, we add the
E-productions with dots at the left ends: E — & +7T and E — -T. Now there
is a T immediately to the right of a dot in the latter item, sowe add T — T« F
and T — -F. Next, the F to the right of a dot forces us to add F — «(E) and
F = -id, but no other items need to be added. O

The closure can be computed as in Fig. 4.32. A convenient way to imple-
ment the function closure is to keep a boolean arvay added, indexed by the
nonterminals of G, such that added[B] is set to true if and when we add the
item B — -y for each B-production B — Y.

SetOfltems CLOSURE(T) {
J=1I ;
repeat
for ( each item A —+ a-BB in J )
for ( each production B — vy of G )
if(B— yisnotin J)
add B = -y to J;

until no more items are added to J on one round;
return J;

Figure 4.32: Computation of CLOSURE

Note that if one B-production is added to the closure of I with the dot at the
left end, then all B-productions will be similarly added to the closure. Hence,
1t is not necessary in some circumstances actually to list the items B — .y
added to I by CLOSURE. A list of the nonterminals B whose productions were
s0 added will suffice. We divide all the sets of items of interest into two classes:

1. Kernel items: the initial item, §' — -S, and all items whose dots are not
at the left end.

2. Nonkernel items: all items with their dots at the left end, except for
S'— .8,

Moreover, each set of items of interest is formed by taking the closure of a set
of kernel items; the items added in the closure can never be kernel items, of
Course. Thus, we can represent the sets of items we are really interested in
with very lttle storage if we throw away all nonkernel items, knowing that they -
could be regenerated by the closure process. In Fig. 4.31, nonkernel items are
in the shaded part of the box for a state,
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The Function GOTO

The second useful function is GOTO(I, X) where I is a set of items and X is a
grammar symbol. GOTO(J, X) is defined to be the closure of the set of all items
[A = X ] such that [4 - a - Xf] is in I. Intuitively, the GOTO function
is used to define the transitions in the LR(0) automaton for a grammar. The
states of the automaton correspond to scts of items, and GOTO(J, X} specifies
the transition from the state for J under input X.

Example 4.41: If [ is the set of two items {[E' - E], [E — E- + T]}, then
GOTO(I, +) contains the items

E-E+.T
T— -TxF
T -F
F = (E)
F—.ad

We computed GOTO(I, +) by examining I for items with + immediately to
the right of the dot. E' — E- is not such an item, but £ - E- 4+ T is. We

moved the dot over the + to get £ — E + -T' and then took the closure of this
singleton set, 0O

We are now ready for the algorithm to construct C, the canonical collection

of sets of LR{0) items for an augmented grammar G’ — the algorithm is shown
in Fig. 4.33.

void items(G') {
C = CLOSURE({[S" — -S]});
repeat
for ( each set of items I in C )
for ( each grammar symbol X )
if { GOTO(Z, X} is not empty and not in C' )
add GOTO(I, X) to C;
until no new sets of items are added to  on a round;

Figure 4.33: Computation of the canonical collection of sets of LR(0) items

Example 4.42: The canonical collection of sets of LR(0) items for grammar
(4.1) and the GOTO function are shown in Fig. 4.31. GOTO is encoded by the

transitions in the figure. 0O
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Use of the LR (0) Automaton

The central idea behind “Simple LR,” or SLR, parsing is the construction from
the grammar of the LR(0) automaton. The states of this automaton are the
sets of items from the canonical LR(0) collection, and the transitions are given
by the GOTO function. The LR(0) automaton for the expression grammar (4.1)
appeared earlier in Fig. 4.31.

The start state of the LR(0) automaton is CLOSURE({[S" — -S]}), where §'
is the start symbol of the augmented grammar. All states are accepting states.
We say “state j” to refer to the state corresponding to the set of items I;.

How can LR(0) automata help with shift-reduce decisions? Shift-reduce
decisions can be made as follows. Suppose that the string -y of grammar symbols
takes the LR(0) automaton from the start state 0 to some state J. Then, shift
on next input symbol « if state j has a transition on a. Otherwise, we choose
to reduce; the items in state 5 will tell us which production to use.

The LR-parsing algorithm to be introduced in Section 4.6.3 uses its stack to
keep track of states as well as grammar symbols; in fact, the grammar symbol
can be recovered from the state, so the stack holds states. The next example
gives a preview of how an LR(0) automaton and a stack of states can be used
to make shift-reduce parsing decisions.

Example 4.43: Figure 4.34 illustrates the actions of a shift-reduce parser on
input id * id, using the LR(0) automaton in Fig. 4.31. We use a stack to hold
states; for clarity, the grammar symbols corresponding to the states on the
stack appear in column SYMBOLS. At line (1), the stack holds the start state 0
of the automaton; the corresponding symbol is the bottom-of-stack marker §.

LINE | STACK | SYMBOLS INPUT | ACTION

(Iy [0 3 id«id § | shift to 5

(2) |05 $id *id § | reduce by F — id
3y |03 $F *id§ | reduce by T = F

4) |02 $T xid$ | shift to 7

(5) 027 §T« id 8 | shift to 5

(6) 10275 |$T«id $ | reduce by F = id
(7) [ 02710 | $TxF $|reduceby T - T+ F
(8) |02 §T $ | reduceby E = T

9) |01 $E $ | accept

Figure 4.34: The parse of id = id

The next input symbol is id and state 0 has a transition on id to state 5.
We therefore shift. At line (2), state 5 (symbol id) has been pushed onto the
Stack. There is no transition from state 5 on input *, s0 we reduce. From item
[F = id] in state 5, the reduction is by production F' — id.
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With symbols, a reduction is implemeunted by popping the body of the pro-

duction from the stack (on line (2), the body is id) and pushing the head of
" the production (in this case, F). With states, we pop state 5 for symbol id,

which brings state 0 to the top and look for a transition on F, the head of the
production. In Fig. 4.31, state 0 has a transition on F to state 3, so we push
state 3, with corresponding symbol F; see line (3).

As another example, consider line (5), with state 7 (symbol ) on top of the
stack. This state has a transition to state 5 on input id, so we push state 5
(symbol id). State 5 has no transitions, so we reduce by F — id. When we
pop state 5 for the body id, state 7 comes to the top of the stack. Since state 7
has a transition on F to state 10, we push state 10 (symbol F). 0O

4.6.3 The LR-Parsing Algorithm

A schematic of an LR parser is shown in Fig. 4.35. It consists of an input,
an output, a stack, a driver program, and a parsing table that has two parts
(ACTION and GOTO). The driver program is the same for all LR parsers; only
the parsing table changes from one parser to another. The parsing program
reads characters from an input buffer one at a time. Where a shift-reduce parser
would shift a symbol, an LR parser shifts a state. Each state summarizes the
information contained in the stack below it.

Input |a1|--- la, !an|$ ’
LR
Stack Sm [ Parsing —  Qutput
Sm—1 Program

= /N

ACTION | GOTO

Figure 4.35: Model of an LR, parser

The stack holds a sequence of states, sos; - - - 5,,, where s, is on top. In the
SLR method, the stack holds states from the LR(0) automaton; the canonical-
LR and LALR methods are similar. By construction, each state has a corre-
sponding grammar symbol. Recall that states correspond to sets of items, and
that there is a transition from state i to state j if GOTO(I;, X) = I;. All tran-
sitions to state j must be for the same grammar symbol X. Thus, each state,
except the start state 0, has a unique grammar symbol associated with it.?

4The converse need not hold; that is, more than one state may have the same grammar
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Structure of the LR Parsing Table

The parsing table consists of two parts: a parsing-action function ACTION and
a goto function GOTO.

1. The ACTION function takes as arguments a state ¢ and a terminal a {or
$, the input endmarker). The value of ACTION[i, a] can have one of four
forms:

(a) Shift j, where 7 is a state. The action taken by the parser effectively
shifts input a to the stack, but uses state j to represent a.

(b} Reduce A — 8. The action of the parser effectively reduces 8 on the
top of the stack to head A.

{¢) Accept. The parser accepts the input and finishes parsing,.

(d) Error. The parser discovers an error in its input and takes some
corrective action. We shall have more to say about how such error-
recovery routines work in Sections 4.8.3 and 4.9.4.

2. We extend the GOTO function, defined on sets of items, to states: if

GOTO[I;, A] = I;, then GOTO also maps a state i and a nonterminal A to
state j.

LR-Parser Configurations

To describe the behavior of an LR parser, it helps to have a notation repre-
senting the complete state of the parser: its stack and the remaining input. A
configuration of an LR parser is a pair:

(5051 - Sm, Qiaiy) - --a,%)

where the first component is the stack contents (top on the right), and the
second component is the remaining input. This configuration represents the
right-sentential form

X1Xo - Xmaiaizy -+ ap

in essentially the same way as a shift-reduce parser would; the only difference is
that instead of grammar symbols, the stack holds states from which grammar
Symbols can be recovered. That is, X; is the grammar symbol represented
by state s,. Note that 80, the start state of the parser, does not represent a
grammar symbol, and serves as 2 bottom-of-stack marker, as well as playing an
important role in the parse.

Symbol. See for example states 1 and 8 in the LR(0) automaton in Fig. 4.31, which are both
entered by transitions on F, or states 2 and 9, which are both entered by transitions on T.
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Behavior of the LR Parser

The next move of the parser from the configuration above is determined by
reading a;, the current input symbol, and s,,, the state on top of the stack,
and then consulting the entry AGTION[s,,,a;] in the parsing action table. The
configurations resulting after each of the four types of move are as follows

1. If ACTION(sys, @;] = shift s, the parser executes a shift move; it shifts the
next state s onto the stack, entering the configuration

(8081 " 8m8, Gigy - an$)

The symbol a; need not be held on the stack, since it can be recovered
from s, if needed (which in practice it never is). The current input symbol
is now a;qq.

2. If ACTION[$,s,a;] = reduce A — B, then the parser executes a reduce
move, entering the configuration

(3031 C Smer$, GiGigl - Gn$)

where r is the length of 3, and s = GOTO[sm—r, A]. Here the parser
first popped 7 state symbols off the stack, exposing state sm.,. The
parser then pushed s, the entry for GOTO[s;,_r, A], onto the stack. The
current input symbol is not changed in a reduce move. For the LR parsers
we shall construct, Xy, 41+ X, the sequence of grammar symbols
corresponding to the states popped off the stack, will always match S,
the right side of the reducing production.

The output of an LR parser is generated after a reduce move by executing
the semantic action associated with the reducing production. For the time
being, we shall assume the output consists of just printing the reducing
production.

3. If ACTION([s,s,@;] = accept, parsing is completed.

4. If ACTION[$,, a;] = error, the parser has discovered an error and calls an
error recovery routine,

The LR-parsing algorithm is summarized below. Al LR parsers behave
in this fashion; the only difference between one LR parser and another is the
information in the ACTION and GOTO fields of the parsing table.

Algorithm 4.44: LR-parsing algorithm.

INPUT: An input string w and an LR-parsing table with functions ACTION and
GOTO for a grammar G.

] J

sm o=
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OUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w;
otherwise, an error indication.

METHOD: Initially, the parser has s, on its stack, where 3; is the initia] state,

and w$ in the input buffer. The parser then executes the program in Fig. 4.36.
(]

let a be the first symbol of w$;
while(1) { /* repeat forever */
" let s be the state on top of the stack;
if ( ACTION[s,a] = shift ¢ ) {
push ¢t onto the stack:
let a be the next input symbol;
} else if ( ACTION[s,a] = reduce A4 — B {
Pop |3] symbols off the stack;
let state ¢ now be on top of the stack;
push GOTO(t, A] onto the stack;
output the production 4 — 8:
} else if ( ACTION(s, a] = accept ) break; /* parsing is done */
else call error-recovery routine;

Figure 4.36: LR-parsing program

Example 4.45: Figure 4.37 shows the ACTION and GOTO functions of an

LR-parsing table for the expression grammar (4.1), repeated here with the
productions numbered:

(1) F=E+T 4 ToF
(2) E-T (5) F - (E)
(3) T—»TxF 6) F-id

The codes for the actions are:

1. si means shift and stack state i,
2. 1j means reduce by the production numbered i
3. acc means accept,

4. blank means error.,

Note that the value of GOTO[s, a] for terminal a is found in the ACTION
field connected with the shift action on input a for state s, The GoTO field
gives GOTO[s, A] for nonterminals A. Although we have not yet explained how
the entries for Fig. 4.37 were selected, we shall dea! with this issue shortly.
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ACTION GOTO
STATE

id + x ) 3 E T F

0 s5 s4 1 2 3
1 s6 ace
2 r2 s7 r2 2
3 4 rd rd r4

4 s5 sd g8 2 3
5 6 b 6 b

6 s5 s4 9 3

7 85 sd 10

8 s6 511

9 rl s7 rl rl
10 r3 r3 r3 r3
11 5 rd 5 15

Figure 4.37: Parsing table for expression grammar

On input id * id + id, the sequence of stack and input contents is shown
in Fig. 4.38. Also shown for clarity, are the sequences of grammar symbols
corresponding to the states held on the stack. For example, at line (1) the LR
parser is in state 0, the initial state with no grammar symbol, and with id the
first input symbol. The action in row 0 and column id of the action field of
Fig. 4.37 is s5, meaning shift by pushing state 5. That is what has happened at
line (2): the state symbol 5 has been pushed onto the stack, and id has been
removed from the input.

Then, * becomes the current input symbol, and the action of state 5 on input
% is to reduce by F' — id. One state symbol is popped off the stack. State 0
is then exposed. Since the goto of state 0 on Fis 3, state 3 is pushed onto the
stack. We now have the configuration in line (3). Each of the remaining moves
is determined similarly. 0O

4.6.4 Constructing SLR-Parsing Tables

The SLR method for constructing parsing tables is a good starting point for
studying LR parsing. We shall refer to the parsing table constructed by this
method as an SLR table, and to an TR, parser using an SLR-parsing tablc as an
SLR parser. The other two methods augment the SLR method with lookahead
information.

The SLR method begins with LR(0) items and LR(0) automata, introduced
in Section 4.5. That is, given a grammar, G, we augment G to produce G,
with a new start symbol $’. From G’, we construct ¢, the canonical collection
of sets of items for G' together with the GOTO function.
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STACK | SYMBoOLS InpuT AcCTIiON

(1)l o id*id + id $ | shift

(2)]05 id *id +id$ | reduce by F — id

3) /03 F *id +id$ | reduce by T — F
(4)]02 T *id + id $ | shift

)| 027 | T« id +id$ | shift

6) 0275 | Txid +id§ | reduce by F — id
(M |[02710|Tx+F +id$ [ reduce by T = T+ F
®) 102 T +id$ | reduceby E 5 T

9) | 01 E +id$ | shift

016 E+ id$§ | shift

0165 | E+id $ | reduce by F — id
0163 |E+F $ | reduceby T 5 F
0169 | E+T $ | reduceby E - E+ T
01 E $ | accept

Figure 4.38: Moves of an LR parser on id x id + id

The ACTION and GOTO entries in the parsing table are then constructed
using the following algorithm. It requires us to know FOLLOW(A} for each
nonterminal A of a grammar (see Section 4.4).

Algorithm 4.46: Constructing an SLR-parsing table.

INPUT: An augmented grammar G.

OUTPUT: The SLR-parsing table functions ACTION and GOTO for G,
METHOD:

1. Construct C = {lo, I, ... s In}, the collection of sets of LR(0) items for
G,

2. State { is constructed from I;. The parsing actions for state 7 are deter-
mined as follows:

(@) I [A - a-afl]isin I; and GOTO(;,a) = I;, then set ACTION[Z, a] to
“shift 5.” Here a must be a terminal.

(b) If[A — o] isin I;, then set ACTION[4,a] to “reduce A — o” for all
@ in FOLLOW(A); here A may not be §’,

(c) If[S' = S-]isin I;, then set ACTION[Z, §] to “accepl.”

If any conflicting actions result from the above rules, we say the grammar
is not SLR(1). The algorithm fails to produce a parser in this case.
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. The goto transitions for state 7 are constructed for all nonterminals A
using the rule: If GOTO(Z;, A) = I;, then GOTO[i, 4] = j.

. All entries not defined by rules (2) and (3} are made “error.”

. The initial state of the parser is the one constructed from the set of items
containing [$ — -S].

The parsing table consisting of the ACTION and GOTO functions determined
by Algorithm 4.46 is called the SLR(1) table for G. An LR parser using the
SLR(1) table for G is called the SLR(1) parser for G, and a grammar having an
SLR(1) parsing table is said to be SLR(1). We usually omit the “(1)” after the
“SLR,” since we shall not deal here with parsers having more than one symbol
of lookahead.

Example 4.47: Let us construct the SLR table for the augmented expression
grammar. The canonical collection of sets of LR(0) items for the grammar was
shown in Fig. 4.31. First consider the set of items Iy:

E' = -FE

E—--E4+T

E—.T

T— TxF

T—-F

Fo (E)

F—.id

The item F — -(E) gives rise to the entry ACTION[0, (] = shift 4, and the

item F' — -id to the entry ACTION[0,id] = shift 5. Other items in I yield no
actions. Now consider Iy:

E' > F-

E—-E 4T

The first item yields ACTION[1, $] = accept, and the second yields ACTION[1, +]
= shift 6. Next consider I:

E—-T
T—=T-xF

Since FOLLOW(E) = {$, +,)}, the first item makes
ACTION[2, §] = ACTION[2, +] = ACTION|[2,)] = reduce E - T

The second item makes ACTION[2, ] = shift 7. Continuing in this fashion we
obtain the ACTION and GOTO tables that were shown in Fig. 4.31. In that
figure, the numbers of productions in reduce actions are the same as the order
in which they appear in the original grammar (4.1). Thatis, E = E+ T is
number 1, E - T is 2, and soon. 0O
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Example 4.48: Every SLR(1) grammar is unambiguous, but there are many
unambiguous grammars that are not SLR(1). Consider the grammar with pro-
ductions

S
L — i {4.49)
R - L

Think of L and R as standing for Lvalue and r-value, respectively, and * as an
operator indicating “contents of.”®> The canonical collection of sets of LR(0)
items for grammar (4.49) is shown in Fig. 4.39.

Ip: 8.8 Is: L—id
S L=R
I Is: S—L=-R
L—-.xR R—-L
L—.id L—=-«xR
R~ -L L—id

5= 5 : L= xR

S>L =R : R= L.
R L.

S—+L=R
S—+ R

L— R
R .L
L= xR
L—.id

Figure 4.39: Canonical LR(0) collection for grammar (4.49)

Consider the set of items fs. The first item in this set makes ACTION(2, =]
be “shift 6.” Since FOLLOW(R) contains = (to see why, consider the derivation
§= L= R= +R = R), the second item sets ACTION[2, =] to “reduce R — L.
Since there is both a shift and a reduce entry in ACTION[2, =], state 2 has a
shift /reduce conflict on input symbol =.

Grammar (4.49) is not ambiguous. This shift/reduce conflict arises from
the fact that the SLR parser construction method is not powerful enough to
remember enough left context to decide what action the parser should take on
input =, having seen a string reducible to L. The canonical aud LALR methods,
to be discussed next, will succeed on a larger collection of grammars, including

SAs in Section 2.8.3, an kvalue designates a location and an rvalue is a value that can be -
stored in a location.
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grammar (4.49). Note, however, that there are unambiguous grammars for
which every LR parser construction method will produce a parsing action table
with parsing action conflicts. Fortunately, such grammars can generally be
avoided in programming language applications. O

4.6.5 Viable Prefixes

Why can LR(0) automata be used to make shift-reduce decisions? The LR(0)
automaton for a grammar characterizes the strings of grammar symbols that _
& can appear on the stack of a shift-reduce parser for the grammar. The stack b
il contents must be a prefix of a right-sentential form. If the stack holds o and £
the rest of the input is x, then a sequence of reductions will take ax to 5. In 5
terms of derivations, § = az.

Not all prefixes of rirgfﬁt-sentential forms can appear on the stack, however,
since the parser must not shift past the handle. For example, suppose

L T e e

bR s

ES Fiid= (E)sid
rm rm

Then, at various times during the parse, the stack will hold (, (E, and (E), but
it must not hold (E)*, since (F) is a handle, which the parser must reduce to
F before shifting *. ¥

The prefixes of right sentential forms that can appear on the stack of a shift- : :
reduce parser are called viable prefizes. They are defined as follows: a viable i
prefix is a prefix of a right-sentential form that does not continue past the right ' -ri
end of the rightmost handle of that sentential form. By this definition, it is 3
always possible to add terminal symbols to the end of a viable prefix to obtain
a right-sentential form. &

SLR parsing is based on the fact that LR{0) automata recognize viable £
prefixes. We say item 4 — -3 is valid for a viable prefix o3, if there is a i
derivation §' 5 adw = affw. In general, an item will be valid for many

rm

viable preﬁxesr.wI 3

The fact that A — B,-5; is valid for af; tells us a lot about whether to ¥
shift or reduce when we find a3, on the parsing stack. In particular, if 85 # ¢, i
then it suggests that we have not yet shifted the handle onto the stack, so shift
is our move. H 3> = ¢, then it looks as if A — B; is the handle, and we should
reduce by this production. Of course, two valid items may tell us to do different i
things for the same viable prefix. Some of these conflicts can be resolved by | ._
looking at the next input symbol, and others can be resolved by the methods +
of Section 4.8, but we should not suppose that all parsing action conflicts can
be resolved if the LR method is applied to an arbitrary grammar.

We can easily compute the set of valid items for each viable prefix that
can appear on the stack of an LR parser. In fact, it is a central theorem of
LR-parsing theory that the set of valid items for a viable prefix v is exactly
the set of items reached from the initial state along the path labeled  in the
LR(0) automaton for the grammar. In essence, the set of valid items embodies
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Items as States of an NFA

A nondeterministic finite automaton N for recognizing viable prefixes can
be constructed by treating the items themselves as states. There is a
transition from A = a- X8 to A - aX-8 labeled X , and there is a
transition from A - a-Bf to B — -y labeled ¢. Then CLOSURE(T) for
set of items (states of N) I is exactly the e-closure of a set of NFA states
defined in Section 3.7.1. Thus, GOTO(I, X) gives the transition from J
on symbol X in-the DFA constructed from N by the subset construction.
Viewed in this way, the procedure items(G') in Fig. 4.33 is Just the subset
construction itself applied to the NFA N with items as states.

all the useful information that can be gleaned from the stack. While we shall
not prove this theorem here, we shall give an example.

Example 4.50: Let us consider the augmented expression grammar again,
whose sets of items and GOTO function are exhibited in Fig. 4.31. Clearly, the
string £ + T'x is a viable prefix of the grammar. The automaton of Fig. 4.31
will be in state 7 after having read E + T+. State 7 contains the items

T>Tx*-F
F—o (B
Fid

which are precisely the items valid for E+Tx. To see why, consider the following
three rightmost derivations

E = E FE' = E E' = E
'
T E+T S E+T T EsT
rm
S E+TF S E4TsF = E4+T+F
rm

rm rm .

=> E4+Tx(E) = E+Txid

rm rm

The first derivation shows the validity of T — T # -F, the second the validity
of F' - -(E), and the third the validity of ¥ — -id. It can be shown that there
are no other valid items for E + T+, although we shall not prove that fact here.
a

4.6.6 Exercises for Section 4.6

Exercise 4.6.1: Describe all ihe viable prefixes for the foliowing grammars:

a) The grammar § — 03 1|0 1 of Exercise 4.2.2(a).
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'b) The grammar S — S5 + | SS x | aof Exercise 4.2.1.
!'c) The grammar § — 5 (S) | € of Exercise 4.2.2(c).

Exercise 4.6.2: Construct the SLR sets of items for the (augmented) grammar
of Exercise 4.2.1. Compute the GOTO function for these sets of items. Show
the parsing table for this grammar. Is the grammar SLR?

Exercise 4.6.8: Show the actions of your parsing table from Exercise 4.6.2 on
the input aa * a+.

Exercise 4.6.4: For each of the (augmented) grammars of Exercise 4.2.2(a)

(g):
a) Construct the SLR sets of items and their GOTO function.
b) Indicate any action conflicts in your sets of items.
c¢) Construct the SLR-parsing table, if one exists.

Exercise 4.6.5: Show that the following grammar:

S = AaAb|BbBa
A -5 ¢
B = ¢

is LL(1) but not SLR(1}.
Exercise 4.6.6: Show that the following grammar:

S + SA|A
A = a

is SLR(1) but not LL(1).
!! Exercise 4.6.7: Consider the family of grammars G,, defined by:

S = A b fOl‘lSiSn
Ai o i Aila; forl<ij<nandi#j

Show that:
a) G, has 2n® — n productions.
b} Gy has 2" + n? + n sets of LR(0) items.
¢) G is SLR(1).

What does this analysis say about how large LR parsers can get?




