4.7. MORE POWERFUL LR PARSERS 259

! Exercise 4.6.8: We suggested that individual items could be regarded as

states of a nondeterministic finite automaton, while sets of valid items are the

states of a deterministic finite automaton (see the box on “Items as States of

an NFA” in Section 4.6.5). For the grammar S —» S5 4+ | S§§ | a of
Exercise 4.2.1:

a) Draw the transition diagram (NFA) for the valid items of this grammar
according to the rule given in the box cited above.

b) Apply the subset construction (Algorithm 3.20) to your NFA from part

(a). How does the resulting DFA compare to the set of LR(0) items for
the grammar? ’

! ¢) Show that in ail cases, the subset construction applied to the NFA that

comes from the valid items for a grammar produces the LR(0) sets of
items.

! Exercise 4.6.9: The following is an ambiguous grammar:

S = AS|b
A = SAdla

i Construct for this grammar its collection of sets of LR(0) items. If we try to
i build an LR-parsing table for the grammar, there are certain conflicting actions.
R What are they? Suppose we tried to use the parsing table by nondeterminis-
tically choosing a possible action whenever there is a conflict. Show all the
possible sequences of actions on input abab.

3. |:'_
=
o
|

._.'..'é'- ™

4.7 More Powerful LR Parsers

In this section, we shall extend the previous LR parsing techniques to use one
symbol of lookahead on the input. There are two different methods:

i

i A

N —

Py

1. The “canonical-LR” or just “LR” method, which makes full use of the

e
s

Tt lookahead symbol(s). This method uses a large set of items, called the
L 3 LR(1) items.

if

b 2. The “lookahead-LR” or “LALR” method, which is based on the LR(0)
| sets of items, and has many fewer states than typical parsers based on the

LR(1) items. By carefully introducing lookaheads into the LR(0) items,
we can handle many more grammars with the LALR method than with
¥ the SLR method, and build parsing tables that are no bigger than the
¥ SLR tables. LALR is the method of choice in most situations.

e L T

ALk

After introducing both these methods, we conclude with a discussion of how to
tompact LR parsing tables for environments with limited memory.

ARy

k=

i

B e 2

e ——
« Y A S
F AT et

T

260 CHAPTER 4. SYNTAX ANALYSIS

4.7.1 Canonical LR(1) Items

We shall now present the most general technique for constructing an LR parsing
table from a grammar. Recall that in the SLR method, state ¢ calls for reduction

‘by A = a if the set of items I; contains item [A = o] and @ is in FOLLOW(A}.

In some situations, however, when state ¢ appears on top of the stack, the
viable prefix Sa on the stack is such that SA cannot be followed by @ in any
right-sentential form. Thus, the reduction by A — « should be invalid on input
a.

Example 4.51: Let us reconsider Example 4.48, where in state 2 we had item
R — L., which could correspond to A — o above, and a could be the = sign,
which is in FOLLOW(R). Thus, the SLR parser calls for reduction by R — L
in state 2 with = as the next input (the shift action is also called for, because
of item S — L-=R in state 2). However, there is no right-sentential form of the
grammar in Example 4.48 that begins R = --- . Thus state 2, which is the
state corresponding to viable prefix L only, should not really call for reduction
ofthat Lto R. O

It is possible to carry more information in the state that will allow us to
rule out some of these invalid reductions by A — «. By splitting states when
necessary, we can arrange to have each staile of an LR parser indicate exactly
which input symbols can follow a handle o for which there is a possible reduction
to A.

The extra information is incorporated into the state by redefining items to
include a terminal symbol as a second component. The general form of an item
becomes [4 = « - §,4], where A — «f is a production and a is a terminal or
the right endmarker $. We call such an object an LR(1) item. The 1 refers
to the length of the second component, called the lookahead of the item.® The
lookahead has no effect in an item of the form [A — a-8,a], where # is not ¢,
but an item of the form [A = a-,a] calls for a reduction by A — o only if the
next input symbol is a. Thus, we are compelled to reduce by 4 —+ a only on
those input symbols a for which [A — a-,e] is an LR(1) item in the state on
top of the stack. The set of such a’s will always be a subset of FOLLOW(A),
but it could be a proper subset, as in Example 4.51.

Formally, we say LR(1) item {4 — o-8,a] is wvalid for a viable prefix v if

there is a derivation S = §Aw = Safw, where
™ ~m

1. 4= éa, and

2. Either a is the first symbol of w, or w is € and a is §.

Example 4.52: Let us consider the grammar

SLookaheads that are strings of length greater than one are possible, of course, but we
shall not consider such lookaheads here.

4.7. MORE POWERFUL LR PARSERS

S BB
B—aB | b

There is a rightmost derivation § = aaBab = acaBab. We see that item (B —

a-B, a] is valid for a viable preﬁ; n'; = aaa B? letting 6 = aaq, A = B, w = ab,
a = a, and # = B in the above definition. There is also a rightmost derivation
S = BaB = BaaB. From this derivation we see that item [B — a-B, $] is

rm T
valid for viable prefix Baa. 0O

4.7.2 Constructing LR(1) Sets of Items

The method for building the collection of sets of valid LR(1) items is essentially
the same as the one for building the canonical collection of sets of LR(0) items.
We need only to modify the two procedures CLOSURE- and GOTO.

SetOfltems CLOSURE(]) {
repeat
for (each item [A = «-Bf,a] in 1)
for (each production B — v in G*)
for (each terminal b in FIRST(Ba))
add [B — -, b] to set I
until no more items are added to I :
return /;

}

SetOfltems GOTO(Z, X) {
initialize J to be the empty set;
for (each item [A — a-X3,a)in T)
add item [4 — aX -8, q] to set J;
return CLOSURE(J);

}

void items(G’) {
initialize C' to CLOSURE({[S" — -5, §]});
repeat
for (each set of items I in C')
for (each grammar symbol X)
if (GOTO(Z, X) is not empty and not in C)
add coTo(I, X) to C;
until no new sets of items are added to c;

Figure 4.40: Sets-of-LR(1)-items construction for grammar G'

262

CHAPTER 4. SYNTAX ANALYSIS

To appreciate the new definition of the CLOSURE operation, in particular,
why b must be in FIRST(fa), consider an item of the form [A - a-BS, a] in the
set of items valid for some viable prefix . Then there is a rightmost derivation
S : dAaz => daBpaz, where v = da. Suppose fax derives terminal string

by “Then for each production of the form B — % for some 5, we have derivation 5
S => vBby = ynby. Thus, [B — -n,b] is valid for v. Note that b can be the i

m e
first termmal derived from g, or it is possible that # derives € in the derivation e

fazx => by, and b can therefore be a. To summarize both possibilities we say
that § can be any terminal in FIRST(Bax), where FIRST is the function from

Section 4.4. Note that = cannot contain the first terminal of by, so FIRST(Baz) b
= FIRST(Ba). We now give the LR(1) sets of items construction. 3
|
In Sz 5 o
§'—.5,% 52858 r
§+-CC,$
i | e
& S—C-C,$ TN
= C—=.cC,$.» "f_
Co.d,$: i ¢ i &
Coe-08 | T[C—eC.$
C—-cC,$ ¥
C—d3$ D i
d E
d Iz .
. g I g..... 1s |
C—ec-Cc/d C—eCc/d i 1
C—-cC,cfd £ 4
C—-d,c/d D ; -_
 d {
o d I £
C—d-,c/d ¥

Figure 4.41: The GoTO graph for grammar (4.55) ¥

Algorithm 4.53: Construction of the sets of LR(1) items.

INPUT: An augmented grammar G,

OUTPUT: The sets of LR(1) items that are the set of items valid for one or
more viable prefixes of G°.

TALYSIS

rticular, .
a] in the :
arivation

i
al string i J |

srivation
n be the

wrivation iR

5 we say b

on from
sT(Bar)

= gt

G PR S

s

s g L

—— =T
e S L o L e T

one or

Heie

4.7. MORE POWERFUL LR PARSERS

METHOD: The procedures CLOSURE and GOTO and the main routine items

for constructing the sets of items were shown in Fig. 4.40. D

Example 4.54: Consider the following augmented grammar.

s = 8
S - CcC (4.55)
C = ¢C|d

We begin by computing the closure of {[S' = -5,8]}. To close, we match
the item [$' — .S, $] with the item [A = a-Bf,d] in the procedure CLOSURE.
Thatis, A=5",a=¢ B = S, 8 =¢, and ¢ = $. Function CLOSURE tells us
to add [B — -, b] for each production B — 7 and terminal b in FIRST(Ba). In
terms of the present grammar, B — -y must be § — CC, and since § is € and
a is §, b may only be $. Thus we add [S—-CC,3).

We continue to compute the closure by adding all items [C = -, b] for &
in FIRST(CS). That is, matching [S = -CC, $] against [A = o BB, a], we have
A=S a=¢B=C, p= C, and a = §. Since C does not derive the empty
string, FIRST(C$) = FIRST(C). Since FIRST(C') contains terminals ¢ and d, we
add items [C' — -¢C, ¢, [C — <C,d), [C - -d,c] and [C - -d,d). None of the
new items has a nonterminal immediately to the right of the dot, so we have
completed our first set of LR(1} items. The initial set of items is

Io HE S,$
S—=.CC, §
C = -cC, ¢/d
C—d c/d

The brackets have been omitted for notational convenience, and we use the
notation (€' — -¢C, ¢/d] as a shorthand for the two items [C' — -¢C, ¢] and
[C = cC, d).

Now we compute GOTO(Jy, X) for the various values of X. For X = S we
must close the item [S" — S, §]. No additional closure is possible, since the
dot is at the right end. Thus we have the next set of items

I : S’—}S‘, $

For X = C we close [S = C-C, $]. We add the C-productions with second
Component $ and then can add no more, yielding

Iz: S—}CC,$
C—-cC,$
C—d 8

Next, let X = ¢. We must close {[C = ¢C, ¢/d]}). We add the C-productions
with second component c¢/d, yielding

263

264 CHAPTER 4. SYNTAX ANALYSIS
I: C—> C'C, C/d
C = -cC, ¢/d
C—d, c/d

Finally, let X = d, and we wind up with the set of items

v
i

Li: C- d', c/d ¥ Ea'
We have finished considering GOTO on I,. We get no new sets from I, but 7,
has goto’s on C, ¢, and d. For GOTO(I2, C) we get i
IL: 5-CC.$
no closure being needed. To compute GOTO(Iz, ¢) we take the closure of '_
{[C = ¢C, $]}, to obtain &
b Coe0,$ ¥
C—=-C,$;|
C-o-d $: e
Note that I; differs from /5 only in second components. We shall see that it _ _f'
is cormmon for several sets of LR(1) items for a grammar to have the same
first components and differ in their second components. When we construct
the collection of sets of LR(0) items for the same grammar, each set of LR(0) i _,
iterns will coincide with the set of first components of one or more sets of LR(1) o
items. We shall have more to say about this phenomenon when we discuss
LALR parsing. 5
Continuing with the GOTO function for I, GOTO(L, d) is seen to be ¥
L: C—od,$ i

Turning now to I3, the GOTO’s of I3 on ¢ and d are I3 and I4, respectively, and i
GOTO(f3,C) is ;i

Ig: C— CC-, C/d

15 and I5 have no GOTO’s, since all items have their dots at the right end. The ;
GOTO’s of I on ¢ and d are Iy and Iy, respectively, and GOTO(Jg, C) is &

T T T,

"
Iy : C"-}CC,$ ‘: 3

The remaining sets of items yield no GOTO’s, so we are done. Figure 4.41
shows the ten sets of items with their goto’s. O

-

R A e o

it

¥

Ll

oA T 0 i Lt

Pa——

o

}
F
E‘I

i

4.7. MORE POWERFUL LR PARSERS

4.7.3 Canonical LR(1) Parsing Tables

We now give the rules for constructing the LR(1) ACTION and GOTO functions
from the sets of LR(1) items. These functions are represented by a table, as
before. The only difference is in the values of the entries.

Algorithm 4.56: Construction of canonical-LR, parsing tables.
INPUT: An augmented grammar G'.

OUTPUT: The canonical-LR parsing table functions ACTION and GOTO for G'.
METHOD:

L. Construct ' = {Iy, I, - -- yIn}, the collection of sets of LR(1) items for
Gl

2. State ¢ of the parser is constructed from I;. The parsing action for state
i is determined as foilows.

(a) If [A - a-af,b)is in I; and GOTO(I;,a) = I;, then set ACTIONF:, a]
to “shift j.” Here a must be a terminal.

(b) If [A - a,a]isin I;, A # &, then set ACTION[{, a] to “reduce
A= al

(¢) If [S"— 5-,8]is in I;, then set ACTION[, §] to “accept.”

If any conflicting actions result from the above rules, we say the grammar
is not LR(1}. The algorithm fails to produce a parser in this case.

3. The goto transitions for state i are constructed for all nonterminals A
using the rule: If GOTO(J;, A) = I;, then GOTO[:, A] = 3.

4. All entries not defined by rules (2) and (3) are made “error.”

5. The initial state of the parser is the one constructed from the set of items
containing [S" — -, §).

The table formed from the parsing action and goto funclions produced by
Algorithm 4.44 is called the canonical LR(1) parsing table. An LR parser using
this table is called a canonical-LR(1) parser. If the parsing action function
has no multiply defined entries, then the given grammar is called an LR(1)
grammar. As before, we omit the “(1)” if it is understood.

Example 4.57: The canonical parsing table for grammar (4.55) is shown in

Fig. 4.42. Productions 1, 2, and 3are § —» CC, C =~ ¢C, and C > d,
respectively. O

Every SLR(1) grammar is an LR(1) grammar, but for an SLR(1) grammar
the canonical LR parser may have more states than the SLR parser for the
Same grammar. The grammar of the previous examples is SLR and has an SLR
Parser with seven states, compared with the ten of Fig. 442,

266 CHAPTER 4. SYNTAX ANALYSIS

ACTION GOTO
STATE

c d $& |5 C
0 s3 s4 1 2
1 acc
2 s6 s7)
3 s3 ¢4 8
4 r3 13
5 rl
6 s6 87 9
7 rd
8 r2 2
9 r2

Figure 4.42: Canonical parsing table for grammar (4.55)

4.7.4 Constructing LALR Parsing Tables

We now introduce our last parser construction method, the LALR (lookahead-
LR) technique. This method is often used in practice, because the tables ob-
tained by it are considerably smaller than the canonical LR tables, yet most
common syntactic constructs of programming languages can be expressed con-
veniently by an LALR grammar. The same is almost true for SLR grammars,
but there are a few constructs that cannot be conveniently handled by SLR
techniques (see Example 4.48, for example).

For a comparison of parser size, the SLR and LALR tables for a grammar
always have the same number of states, and this number is typically several
hundred states for a language like C. The canonical LR table would typically
have several thousand states for the same-size language. Thus, it is much easier
and more economical to construct SLR and LALR tables than the canonical
LR tables.

By way of introduction, let us again consider grammar (4.55), whose sets of
LR(1) items were shown in Fig. 4.41. Take a pair of similar looking states, such
as Iy and I7. Each of these states has only items with first component C' — d-.
In I, the lookaheads are ¢ or d; in I7, § is the only lookahead.

To see the difference between the roles of I, and I in the parser, note that
the grammar generates the regular language c*dc”d. When reading an input
cc---cdee- - -ed, the parser shifts the first group of ¢’s and their following d
onto the stack, entering state 4 after reading the d. The parser then calls for a
reduction by C — d, provided the next input symbol is ¢ or d. The requirement
that ¢ or d follow makes sense, since these are the symbols that could begin
strings in ¢*d. If § follows the first d, we have an input like ccd, which is not
in the language, and state 4 correctly declares an error if § is the next input.
The parser enters state 7 after reading the second d. Then, the parser must

