266 CHAPTER 4. SYNTAX ANALYSIS

ACTION GOTO
STATE

e d § |85 C
0 s3 s4 1 2
1 acc
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 rl
6 $6 a7 9
7 r3
2 r2 r2
9 r2

Figure 4.42: Canonical parsing table for grammar (4.55)

4.7.4 Constructing LALR Parsing Tables

We now introduce our last parser construction method, the LALR (lookahead-
LR) technique. This method is often used in practice, because the tables ob-
tained by it are considerably smaller than the canonical LR tables, yet most
common syntactic constructs of programming languages can be expressed con-
veniently by an LALR grammar. The same is almost true for SLR grammars,
but there are a few constructs that cannot be conveniently handled by SLR
techniques (see Example 4.48, for example).

For a comparison of parser size, the SLR and LALR tables for a grammar
always have the same number of states, and this number is typically several
hundred states for a language like C. The canonical LR table would typically
have several thousand states for the same-size language. Thus, it is much easier
and more economical to construct SLR and LALR tables than the canonical
LR tables.

By way of introduction, let us again consider grammar (4.55), whose sets of
LR(1) items were shown in Fig. 4.41. Take a pair of similar looking states, such
as I, and I;. Bach of these states has only items with first component ¢ — d-.
In I, the lookaheads are c or d; in I, § is the only lookahead.

To see the difference between the roles of Iy and Iy in the parser, note that
the grammar generates the regular language c*dc*d. When reading an input
ce---edec- - ed, the parser shifts the first group of ¢’s and their following d
onto the stack, entering state 4 after reading the d. The parser then calls for a
reduction by €' — d, provided the next input symbol is ¢ or d. The requirement
that ¢ or d follow makes sense, since these are the symbols that could begin
strings in ¢*d. If $ follows the first d, we have an input like ced, which is not
in the language, and state 4 correctly declares an error if § is the next input.
The parser enters state 7 after reading the second d. Then, the parser must

4.7. MORE POWERFUL LR PARSERS 267

see § on the input, or it started with a string not of the form c*de*d. It thus
makes sense that state 7 should reduce by ¢ — d on input $ and declare error
on inputs ¢ or d.

Let us now replace Iy and I; by Iy7, the union of Iy and I7, consisting of
the set of three items represented by [C — d-, ¢/ d/8). The goto’s on d to I, or
I7 from Iy, b, Iy, and I now enter I47. The action of state 47 is to reduce on
any input. The revised parser behaves essentially like the original, although it
might reduce d to C in circumstances where the original would declare error,
for example, on input like ced or edede. The error will eventually be caught; in
fact, it will be caught before any more input symbols are shifted.

More generally, we can look for sets of LR(1) items having the same core,
that is, set of first components, and we may merge these sets with common
cores into one set of items. For example, in Fig. 4.41, I and I; form such a
pair, with core {C' — d'}. Similarly, J; and 7 form another pair, with core
{C = ¢ C,C— C, C - -d}. Thereis one more pair, Iy and {g, with common
core {C -+ ¢C-}. Note that, in general, a core is a set of LR(0} items for the
grammar at hand, and that an LR(1) grammar may produce more than two
sets of items with the same core.

Since the core of GOTO(I, X) depends only on the core of I , the goto’s of
merged sets can themselves be merged. Thus, there is no problem revising the
goto function as we merge sets of items. The action functions are modified to
reflect the non-error actions of all sets of items in the merger.

Suppose we have an LR(1) grammar, that is, one whose sets of LR(1) items
produce no parsing-action conflicts, If we replace all states having the same core
with their union, it is possible that the resulting union will have a conflict, but
it is unlikely for the following reason: Suppose in the union there is a conflict
on lookahead a because there is an item [A4 — a-,a] calling for a reduction by
A — a, and there is another item [B — S-.av, b] calling for a shift. Then some
set of items from which the union was formed has item [A = a-,a], and since
the cores of all these states are the same, it must have an item [B — f-av, c]
for some c. But then this state has the same shift /reduce conflict on @, and
the grammar was not LR(1) as we assumed. Thus, the merging of states with
tommon cores can never produce a shift/reduce conflict that was not present
in one of the original states, because shift actions depend only on the core, not
the lookahead.

It is possible, however, that a merger will produce a reduce/reduce conflict,
as the following example shows.

Example 4.58: Consider the grammar
s = 8
S = aAd|bBd|aBe|bAe
A = ¢
B = ¢

which generates the four strings acd, ace, bed, and bee. The reader can check
that the grammar is LR(1) by constructing the sets of items. Upon doing so,

268 CHAPTER 4. SYNTAX ANALYSIS

we find the set of items {[4 — ¢, d], [B = ¢, €]} valid for viable prefix ac and
{[A = ¢, €], [B = ¢, d]} valid for be. Neither of these sets has a conflict, and
their cores are the same. However, their union, which is

A=, dfe
B = e, dfe

generates a reduce/reduce conflict, since reductions by both A - cand B> ¢
are called for on inputs d and e. O

f We are now prepared to give the first of two LALR. table-construction al-

| gorithms. The general idea is to construct the sets of LR(1) items, and if no
conflicts arise, merge sets with common cores. We then construct the parsing
table from the collection of merged sets of items. The method we are about to
describe serves primarily as a definition of LALR(1) grammars. Constructing
the entire collection of LR(1) sets of items requires too much space and time to
be useful in practice.

Algorithm 4.59: An easy, but space-consuming LALR table construction.
INPUT: An augmented grammar G'.
OUTPUT: The LALR parsing-table functions ACTION and GOTO for G'.

METHOD:
1. Construct ¢ = {Ig, I1,...,I,}, the collection of sets of LR{1) items.

2. For each core present among the set of LR(1) items, find all sets having
that core, and replace these sets by their union.

3. Let C' = {Jo,J1,--.,Jm} be the resulting sets of LR(1) items. The
parsing actions for state i are constructed from J; in the same manner as
in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails
to produce a parser, and the grammar is said not to be LALR(1).

4. The GOTO table is constructed as follows. If J is the union of one or
more sets of LR{1) items, that is, J = I, N L N --- N I, then the i ot
cores of GOTO([}, X), coTO(l3, X),... ,GOTO(I:, X} are the same, since &
I, I, ... I all have the same core. Let K be the union of all sets of o
items having the same core as GOTO([1, X). Then GoTO(J, X) = K.

(]

The table produced by Algorithm 4.59 is called the LALR parsing table for
G. If there are no parsing action conflicts, then the given grammar is said to

be an LALR(1) grammar. The collection of sets of items constructed in step
(3) is called the LALR(1) collection.

1 al-
f no
sing
it to
ting
e to

ving

The
er as
fails

1e or
1 the
since
ts of

‘e for
id to
step

4.7. MORE POWERFUL LR PARSERS

Example 4.60: Again consider grammar (4.55) whose GOTO graph was shown
in Fig. 4.41. As we mentioned, there are three pairs of sets of items that can
be merged. I3 and I are replaced by their union:

Lg: C— C'C, C/d/$
C = ¢C, ¢/df$
C - d, c/d/$

Iy and I7 are replaced by their union:

Lz C—d, ¢/df$

and I3 and Iy are replaced by their union: { i

b It C = cC-y c/df$ i

g The LALR action and goto functions for the condensed sets of items are shown i
o in Fig. 4.43. '
| ACTION GOTO
S STATE
| e c d 8§ |5 C AT
i 0 [s36 s47 1 2 gl
| 8 1 ace s
| T 2 |36 s47 5
o oy 36 s36 847 89
| A 47 3 3 13
(48 5 rl | HiE
i 8 [r2 12 =2 i

i) i Figure 4.43: LALR parsing table for the grammar of Example 4.54 LI ;

2 i i To see how the GOTO’s are computed, consider GOTO(l36,C). In the original
B i set of LR(1) items, GOTO(I3, C) = Iy, and I3 is now part of Isg, 50 we make
' GOTO(l36,C) be lgg. We could have arrived al the same conclusion if we
2 considered Ig, the other part of [s. That is, GOTO(fs,C) = Iy, and Iy is
; E now part of 7gg. For another example, consider GOTO(I3, ¢), an entry that is
2| [exercised after the shift action of on input c. In the original sets of LR(1)
b o items, GOTO(Jy, ¢) = I5. Since Ig is now part of I35, GOTO(Iz, ¢} becomes Isg.
Thus, the entry in Fig. 4.43 for state 2 and input ¢ is made 536, meaning shift
and push state 36 onto the stack. O

When presented with a string from the language ¢*dec*d, both the LR parser
of Fig. 4.42 and the LALR parser of Fig. 4.43 make exactly the same sequence
of shifts and reductions, although the names of the states on the stack may
differ. For instance, if the LR parser puts I3 or I on the stack, the LALR

270 CHAPTER 4. SYNTAX ANALYSIS

parser will put f36 on the stack. This relationship holds in general for an LALR
grammar. The LR and LALR parsers will mimic one another on correct inputs.
When presented with erroneous input, the LALR parser may proceed to do
some reductions after the LR parser has declared an error. However, the LALR
parser will never shift another symbol! after the LR parser declares an error.
For example, on input ced followed by $, the LR parser of Fig. 4.42 will put

0334

on the stack, and in state 4 will discover an error, because $ is the next input
symbol and state 4 has action error on $. In contrast, the LALR parser of Fig.
4.43 will make the corresponding moves, putting

0 36 36 47

on the stack. But state 47 on input $ has action reduce ¢ — d. The LALR
parser will thus change its stack to

0 36 36 89
Now the action of state 89 on input $ is reduce €' — ¢C. The stack becomes
0 36 89
whereupon a similar reduction is called for, obtaining stack
02

Finally, state 2 has action error on input $, so the error is now discovered.

4.7.5 Efficient Construction of LALR Parsing Tables

There are several modifications we can make to Algorithm 4.59 to avoid con-
structing the full collection of sets of LR(1) items in the process of creating an
LALR(1) parsing table.

e First, we can represent any set of LR(0) or LR(1) items I by its kernel,
that is, by those items that are either the initial item [S" = -S] or
[$" — S, 8] or that have the dot somewhere other than at the beginning
of the production body.

¢ We can construct the LALR(1)-item kernels from the LR(0)-item kernels

by a process of propagation and spontaneous generation of lookaheads,
that we shall describe shortly.

¢ If we have the LALR(1) kernels, we can generate the LALR(1) parsing
¢ table by closing each kernel, using the function CLOSURE of Fig. 4.40, and
B then computing table entries by Algorithm 4.56, as if the LALR(1) sets
- of items were canonical LR(1) sets of items.

S AL F g

e e

AT e) e

3
s

5 v

L T e T Brieaidiancae g

b it

4.7. MORE POWERFUL LR PARSERS 271

Example 4.61: We shall use as an example of the efficient LALR(1) table-
construction method the non-SLR, grammar from Example 4.48, which we re-
produce below in its augmented form:

s - 8

S =- L=R|R

L - xR | id

R = L

The complete sets of LR(0) items for this grammar were shown in Fig. 4.39.
The kernels of these items are shown in Fig. 444, O

Iy 85 .8 Is: L —=id
I]I S’—)S Ie,: S—)L:R

Ip: S L.=R I;: L xR
R—= L

I32 S~ R Iy R L

Ii: Lo xR Iy: S=>L=R

Figure 4.44: Kernels of the sets of LR(0) items for grammar (4.49)

Now we must attach the proper lookaheads to the LR(0) items in the kernels,
to create the kernels of the sets of LALR(1) items. There are two ways a
lookahead b can get attached to an LR({0) item B — ~-§ in some set, of LALR(1)
items J:

1. There is a set of items I, with a kernel item A — a-f,a, and J =
GOTO(Z, X}, and the construction of

GOTO(CLOSURE({[A — a3, al}), X)

as given in Fig. 4.40, contains [B ~+ ¥-6, 8], regardless of a. Such a looka-
head & is said to be generated spontaneously for B — ~-6.

- As a special case, lookahead § is generated spontaneously for the item
§' = -S in the initial set of items.

B,
e

[l
bl 1

- Allis as in (1), but @ = b, and GOTO(CLOSURE({[A — af3,8}),X), as
given in Fig. 4.40, contains [B — v-6,b] only because 4 — a3 has b as
one of its associated lookaheads. In such a case, we say that lookaheads
propagate from A — o in the kernel of I to B — 7-0 in the kernel of
J. Note that propagation does not depend on the particular lookahead o
symbol; either all lookaheads propagate from one item to another, or none
do.

L
i P I

TR

272 CHAPTER 4. SYNTAX ANALYSIS

We need to determine the spontaneously generated lookaheads for each set
of LR{0}) items, and also to determine which items propagate lookaheads from
which. The test is actually quite simple. Let # be a symbol not in the grammar
at hand. Let A = a-f be a kernel LR(0) item in set J. Compute, for each X,
J = coTo(CLOSURE({[A — a-8,#]}),X). For each kernel item in J, we
examine its set of lookaheads. If # is a lookahead, then lookaheads propagate
to that item from A - o-8. Any other lookahead is spontanecusly generated.
These ideas are made precise in the following aigorithm, which also makes use
of the fact that the only kernel items in J must have X immediately to the left
of the dot; that is, they must be of the form B = yX 4.

I e S

Algorithm 4.62: Determining lookaheads.
INPUT: The kernel K of a set of LR(0) items { and a grammar symbol X.

i

OUTPUT: The lookaheads spontaneously generated by items in I for kernel
items in GOTO(J, X'} and the items in J from which lookaheads are propagated
to kernel items in GOTO(I, X).

METHOD: The algorithm is given in Fig. 445. O

for (each item A = a-fin K) {
J := CLOSURE({[A — o-8,#]});
if ([B—vyXé,a)isin J, and a is not #)
conclude that lookahead @ is generated spontaneously for item
B = ~X:4 in GoTOo(I, X);
if ([B—vXé#]isinJ)
conclude that lookaheads propagate from A = «-3 in [to
B = vX 4§ in goTo(l, X);

pe———
2 - ~ e e e T T 8 B e S P

Figure 4.45: Discovering propagated and spontaneous lookaheads

K

We are now ready to attach lookaheads to the kernels of the sets of LR(0)
items to form the sets of LALR(1) items. First, we know that § is a looka-
head for S’ — -5 in the initial set of LR(0) items. Algorithm 4.62 gives us all
the lookaheads generated spontaneously. After listing all those lookaheads, we
must allow them to propagate until no further propagation is possible. There
are many different approaches, all of which in some sense keep track of “new”
lookaheads that have propagated into an item but which have not yet propa-
gated out. The next algorithm describes one technique to propagate lookaheads
to all items.

4 t.
S

ST

} mIa

v
SR

TR

=l

Fiima=n

Algorithm 4.63: Efficient computation of the kernels of the LALR(1) collec-
tion of sets of items.

T L, T T B TR R,
e

PR

INPUT: An augmented grammar G°.

4.7. MORE POWERFUL LR PARSERS

OUTPUT: The kernels of the LALR(1) collection of sets of items for G'.
METHOD:

1. Construct the kernels of the sets of LR(0) items for G. If space is not at
a premium, the simplest way is to construct the LR(0) sets of items, as in
Section 4.6.2, and then remove the nonkernel items. If space is severely
constrained, we may wish instead to store only the kernel items for each

set, and compute GOTO for a set of items J by first computing the closure
of 1.

- Apply Algorithm 4.62 to the kernel of each set of LR(0) items and gram-
mar symbol X to determine which lookaheads are spontaneously gener-
ated for kernel items in GOTO(I, X), and from which items in J lookaheads
: are propagated to kernel items in GoTo(I, X).

3. Initialize a table that gives, for each kernel item in each set of items, the
associated lookaheads. Initially, each item has associated with it only

those lookaheads that we determined in step (2) were generated sponta-
neously.

e 4. Make repeated passes over the kernel items in all sets. When we visit an
; 5 item ¢, we look up the kernel items to which propagates its lookaheads,

3 using information tabulated in step (2). The current set of lookaheads
for 7 is added to those already associated with each of the items to which
% i propagates its lookaheads. We continue making passes over the kernel
3 items until no more new lookahesds are propagated.

o

A Example 4.64: Let us construct the kernels of the LALR(1) items for the
o grammar of Example 4.61. The kernels of the LR(0) items were shown in

& Fig. 4.44. When we apply Algorithm 4.62 to the kernel of set of items Iy, we
T first compute CLOSURE({[S’ — -5, #1}), which is

Among the items in the closure, we see two where the lookahead = has been
Senerated spontaneously. The first of these is I, — - « R. This item, with * to
the right of the dot, gives rise to [L = =R, =|. That is, = is a spontaneously
generated lookahead for I — #-R, which is in set of items I;. Similarly, [L —

id, =] tells us that = is a spontaneously generated lookahead for L — id: in
5.

As # is a lookahead for all six items in the closure, we determine that the
item S’ — .S in I, propagates lookaheads to the following six items:

274 CHAPTER 4. SYNTAX ANALYSIS

8§ - 5in [L - xRin I,
S=+L=Rinl, L—id inl;
S—=Rink R—=Linl
Froum To
Io: S'= .5 I1: S’—)-S
Ly, S L.-=R
It R—=L-
I32 S"‘")R
Iy: L= xR
Is: L—id

Ly S—>L.=R Is: S—=L=-R
Ii: L= +R I,: L—=xR

I5: L —=id-
I7: L - xR
Is: R L
It SL=-R|I: L—%R
Is. L-—id
Is: R— L-
Ig! S=L=R

Figure 4.46: Propagation of lookaheads

In Fig. 4.47, we show steps (3) and (4) of Algorithm 4.63. The column
labeled INIT shows the spontaneously generated lookaheads for each kernel jtem.
These are only the two occurrences of = discussed earlier, and the spontaneous
lookahead $ for the initial item S* — -S.

On the first pass, the lookahead $ propagates from $' — § in Iy to the
six items listed in Fig. 4.46. The lookahead = propagates from L - %R in Iy
toitems L —*R-in Iy and R — L- in I3. It also propagates to itself and to
L —id - in Is, but these lookaheads are already present. In the second and third
passes, the only new lookahead propagated is §, discovered for the successors of
I> and Iy on pass 2 and for the successor of I on pass 3. No new lookaheads are
propagated on pass 4, so the final set of lookaheads is shown in the rightmost
column of Fig. 4.47.

Note that the shift/reduce conflict found in Example 4.48 using the SLR
method has disappeared with the LALR technique. The reason is that only
lookahead § is associated with R — L- in I2, so there is no conflict with the
parsing action of shift on = generated by item § — L-=Rin I,., O

4.7. MORE POWERFUL LR PARSERS

i INIT PA:SO OIKAET;J S2 Pass 3
Iy: §'—.S $ 3 3 $
Ii: 86 8 3 $
Iy S5 L=R $ $ $

R— L. $ $ 8
I3: S-SR $ $ $
Iy L xR = =/$ =/$ =/$
Is: L—id = =/ =/$ =/$
Iy S=L=R 3 3
I: L= xR = =/% =/$
Is: R L. = =/$ =/$
Iyy S5 L=R $

Figure 4.47: Computation of lookaheads

4.7.6 Compaction of LR Parsing Tables

A typical programming language grammar with 50 to 100 terminals and 100
productions may have an LALR, parsing table with several hundred states. The
action function may easily have 20,000 entries, each requiring at least 8 bits
to encode. On small devices, a more efficient encoding than a two-dimensional
array may be important. We shail mention briefly a few techniques that have
been used to compress the ACTION and GOTO fields of an LR parsing table:
One useful technique for compacting the action field is to recognize that
usually many rows of the action table are identical. For example, in Fig. 4.42,
States 0 and 3 have identical action entries, and so do 2 and 6. We
Save considerable space, at little cost in time, if we create a poi
State into a one-dimensional array. Pointers for states with the
Point to the same location. To access information from this array, we assign
each terminal a number from zero to one less than the number of terminals,
and we use this integer as an offset from the pointer value for each state. In

a given state, the parsing action for the ith terminal will be found { localions
Past the pointer value for that state.

Further space efficiency can be achieved at the expense of a somewhat slower
barser by creating a list for the actions of each state.
(terminal—symbo], action) pairs. The most frequent actio

can therefore
nter for each
same actions

The list consists of
n for a state can be

