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Bottom-up parsing 
As the name suggests, bottom-up parsing works in the opposite direction from top-
down.  A top-down parser begins with the start symbol at the top of the parse tree and 
works downward, driving productions in forward order until it gets to the terminal 
leaves.  A bottom-up parse starts with the string of terminals itself and builds from the 
leaves upward, working backwards to the start symbol by applying the productions in 
reverse.  Along the way, a bottom-up parser searches for substrings of the working 
string that match the right side of some production.  When it finds such a substring, it 
reduces it, i.e., substitutes the left side nonterminal for the matching right side.  The goal 
is to reduce all the way up to the start symbol and report a successful parse. 
 
In general, bottom-up parsing algorithms are more powerful than top-down methods, 
but not surprisingly, the constructions required are also more complex.  It is difficult to 
write a bottom-up parser by hand for anything but trivial grammars, but fortunately, 
there are excellent parser generator tools like yacc that build a parser from an input 
specification, not unlike the way lex builds a scanner to your spec. 
 
Shift-reduce parsing is the most commonly used and the most powerful of the bottom-up 
techniques.  It takes as input a stream of tokens and develops the list of productions used 
to build the parse tree, but the productions are discovered in reverse order of a top-
down parser.  Like a table-driven predictive parser, a bottom-up parser makes use of a 
stack to keep track of the position in the parse and a parsing table to determine what to 
do next. 
 
To illustrate stack-based shift-reduce parsing, consider this simplified expression 
grammar: 

S  –> E 
E –> T | E + T 
T –> id | (E) 

 

The shift-reduce strategy divides the string that we are trying parse into two parts: an 
undigested part and a semi-digested part.  The undigested part contains the tokens that 
are still to come in the input, and the semi-digested part is put on a stack.  If parsing the 
string v, it starts out completely undigested, so the input is initialized to v, and the stack 
is initialized to empty. A shift-reduce parser proceeds by taking one of three actions at 
each step: 
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Reduce: If we can find a rule A –> w, and if the contents of the stack are qw for some q (q 
may be empty), then we can reduce the stack to qA.  We are applying the 
production for the nonterminal A backwards.  For example, using the 
grammar above, if the stack contained (id we can use the rule T –> id to reduce 
the stack to (T.   
There is also one special case: reducing the entire contents of the stack to the 
start symbol with no remaining input means we have recognized the input as 
a valid sentence (e.g., the stack contains just w, the input is empty, and we 
apply S –> w).  This is the last step in a successful parse. 
The w being reduced is referred to as a handle.  Formally, a handle of a right 
sentential form u is a production A –> w, and a position within u where the 
string w may be found and replaced by A to produce the previous right-
sentential form in a rightmost derivation of u.  Recognizing valid handles is 
the difficult part of shift-reduce parsing. 

 
Shift:   If it is impossible to perform a reduction and there are tokens remaining in the 

undigested input, then we transfer a token from the input onto the stack.  This 
is called a shift.  For example, using the grammar above, suppose the stack 
contained ( and the input contained id+id).  It is impossible to perform a 
reduction on ( since it does not match the entire right side of any of our 
productions.  So, we shift the first character of the input onto the stack, giving 
us (id on the stack and +id) remaining in the input. 
 

Error: If neither of the two above cases apply, we have an error.  If the sequence on 
the stack does not match the right-hand side of any production, we cannot 
reduce.  And if shifting the next input token would create a sequence on the 
stack that cannot eventually be reduced to the start symbol, a shift action 
would be futile.  Thus, we have hit a dead end where the next token 
conclusively determines the input cannot form a valid sentence.  This would 
happen in the above grammar on the input id+).  The first id would be shifted, 
then reduced to T and again to E, next + is shifted.  At this point, the stack 
contains E+ and the next input token is ).  The sequence on the stack cannot be 
reduced, and shifting the ) would create a sequence that is not viable, so we 
have an error. 
 

The general idea is to read tokens from the input and push them onto the stack 
attempting to build sequences that we recognize as the right side of a production.  When 
we find a match, we replace that sequence with the nonterminal from the left side and 
continue working our way up the parse tree.  This process builds the parse tree from the 
leaves upward, the inverse of the top-down parser.  If all goes well, we will end up 
moving everything from the input to the stack and eventually construct a sequence on 
the stack that we recognize as a right-hand side for the start symbol. 
 
Let’s trace the operation of a shift-reduce parser in terms of its actions (shift or reduce) 
and its data structure (a stack). The chart below traces a parse of (id+id) using the 
previous example grammar: 
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PARSE 
STACK 

REMAINING 
INPUT 

PARSER 
ACTION 

 (id + id)$ Shift 
(push next token from input on stack, advance 
input) 

( id + id)$ Shift 
(id + id)$ Reduce: T –> id 

(pop right-hand side of production off stack, 
push left-hand side, no change in input) 

(T + id)$ Reduce: E –> T 
(E + id)$ Shift 
(E + id)$ Shift 
(E + id )$ Reduce: T –> id 
(E + T )$ Reduce: E –> E + T 

(Ignore: E –> T) 
(E )$ Shift 
(E) $ Reduce: T –> (E) 
T $ Reduce: E –> T 
E $ Reduce: S –> E 
S $  

 
In the above parse on step 7, we ignored the possibility of reducing E –> T because that 
would have created the sequence (E + E on the stack which is not a viable prefix of a right 
sentential form.  Formally, viable prefixes are the set of prefixes of right sentential forms 
that can appear on the stack of a shift-reduce parser, i.e. prefixes of right sentential forms 
that do not extend past the end of the rightmost handle.  Basically, a shift-reduce parser 
will only create sequences on the stack that can lead to an eventual reduction to the start 
symbol.  Because there is no right-hand side that matches the sequence (E + E and no 
possible reduction that transforms it to such, this is a dead end and is not considered.  
Later, we will see how the parser can determine which reductions are valid in a 
particular situation. 
 
As they were for top-down parsers, ambiguous grammars are problematic for bottom-up 
parsers because these grammars could yield more than one handle under some 
circumstances.  These types of grammars create either shift-reduce or reduce-reduce 
conflicts.  The former refers to a state where the parser cannot decide whether to shift or 
reduce.  The latter refers to a state where the parser has more than one choice of 
production for reduction.  An example of a shift-reduce conflict occurs with the if-then-
else construct in programming languages.  A typical production might be: 
 
  S  –> if E then S | if E then S else S 
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Consider what would happen to a shift-reduce parser deriving this string: 
  if E then if E then S else S 
 

At some point the parser's stack would have:  
  if E then if E then S  
 

with else as the next token.  It could reduce because the contents of the stack match the 
right-hand side of the first production or shift the else trying to build the right-hand side 
of the second production.  Reducing would close off the inner if and thus associate the 
else with the outer if.  Shifting would continue building and later reduce the inner if with 
the else.  Either is syntactically valid given the grammar, but two different parse trees 
result, showing the ambiguity.  This quandary is commonly referred to as the dangling 
else.  Does an else appearing within a nested if statement belong to the inner or the outer?  
The C and Java languages agree that an else is associated with its nearest unclosed if.  
Other languages, such as Ada and Modula, avoid the ambiguity by requiring a closing 
endif delimiter. 
 
Reduce-reduce conflicts are rare and usually indicate a problem in the grammar 
definition. 
 
Now that we have general idea of how a shift-reduce parser operates, we will look at 
how it recognizes a handle, and how it decides which production to use in a reduction.  
To deal with these two issues, we will look at a specific shift-reduce implementation 
called LR parsing. 
 
LR Parsing 
LR parsers ("L" for left to right scan of input, "R" for rightmost derivation) are efficient, 
table-driven shift-reduce parsers.  The class of grammars that can be parsed using LR 
methods is a proper superset of the class of grammars that can be parsed with predictive 
LL parsers.  In fact, virtually all programming language constructs for which CFGs can 
be written can be parsed with LR techniques.  As an added advantage, there is no need 
for lots of grammar rearrangement to make it acceptable for LR parsing the way that LL 
parsing requires. 
 
The primary disadvantage is the amount of work it takes to build the tables by hand, 
which makes it infeasible to hand-code an LR parser for most grammars.  Fortunately, 
there are LR parser generators that create the parser from an unambiguous CFG 
specification.  The parser tool does all the tedious and complex work to build the 
necessary tables and can report any ambiguities or language constructs that interfere 
with the ability to parse it using LR techniques. 
 
We begin by tracing how an LR parser works.  Determining the handle to reduce in a 
sentential form depends on the sequence of tokens on the stack, not only the topmost 
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ones that are to be reduced, but the context at which we are in the parse.  Rather than 
reading and shifting tokens onto a stack, an LR parser pushes "states" onto the stack; 
these states describe what is on the stack so far.  Think of each state as encoding the 
current left context.  The state on top of the stack possibly augmented by peeking at a 
lookahead token enables us to figure out whether we have a handle to reduce, or 
whether we need to shift a new state on top of the stack for the next input token. 
 
An LR parser uses two tables: 
 

1. The action table Action[s,a] tells the parser what to do when the state on top of the 
stack is s and terminal a is the next input token.  The possible actions are to shift 
a state onto the stack, to reduce the handle on top of the stack, to accept the 
input, or to report an error. 

 
2. The goto table Goto[s,X] indicates the new state to place on top of the stack after a 

reduction of the nonterminal X while state s is on top of the stack. 

The two tables are usually combined, with the action table specifying entries for 
terminals, and the goto table specifying entries for nonterminals. 
 
LR Parser Tracing 
We start with the initial state s0 on the stack.  The next input token is the terminal a and 
the current state is st. The action of the parser is as follows: 
 

• If Action[st,a] is shift, we push the specified state onto the stack.  We then call 
yylex() to get the next token a from the input. 

• If Action[st,a] is reduce Y  –> X1...Xk then we pop k states off the stack (one for each 
symbol in the right side of the production) leaving state su on top.  Goto[su,Y] gives 
a new state sV to push on the stack.  The input token is still a (i.e., the input 
remains unchanged). 

• If Action[st,a] is accept then the parse is successful and we are done. 
• If Action[st,a] is error (the table location is blank) then we have a syntax error.  

With the current top of stack and next input we can never arrive at a sentential 
form with a handle to reduce. 

 
As an example, consider the following simplified expression grammar. The productions 
have been sequentially numbered so we can refer to them in the action table: 
 

1)  E –> E + T  
2)  E –> T 
3)  T –> (E)  
4)  T –> id 
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Here is the combined action and goto table.  In the action columns sN means shift state 
numbered N onto the stack number and rN action means reduce using production 
numbered N.  The goto column entries are the number of the new state to push onto the 
stack after reducing the specified nonterminal.  This is an LR(0) table (more details on 
table construction will come in a minute). 
 

 Action  Goto State on  
top of 
stack id + ( ) $ E T 

0 s4  s3   1 2 
1  s5   accep

t 
  

2 r2 r2 r2 r2 r2   
3 s4  s3   6 2 
4 r4 r4 r4 r4 r4   
5 s4  s3    8 
6  s5  s7    
7 r3 r3 r3 r3 r3   
8 r1 r1 r1 r1 r1   

 
 
Here is a parse of id + (id) using the LR algorithm with the above action and goto table: 
 

STATE 
STACK 

REMAINING 
INPUT 

PARSER 
ACTION 

S0 id + (id)$ Shift S4 onto state stack,  
move ahead in input 

S0S4  + (id)$ Reduce 4) T –> id, pop state 
stack,  goto S2, input 
unchanged  

S0S2 + (id)$ Reduce 2) E –> T, goto S1 
S0S1 + (id)$ Shift S5 
S0S1S5  (id)$ Shift S3 
S0S1S5S3 id)$ Shift S4 
S0S1S5S3S4 )$ Reduce 4) T –> id, goto S2 
S0S1S5S3S2 )$ Reduce 2) E –> T, goto S6 
S0S1S5S3S6 )$ Shift S7 
S0S1S5S3S6S7 $ Reduce 3) T –> (E), goto S8 
S0S1S5S8 $ Reduce 1) E –> E + T, goto S1 
S0S1 $ Accept 

 
 
LR Parser Types 
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There are three types of LR parsers: LR(k), simple LR(k), and lookahead LR(k) (abbreviated 
to LR(k), SLR(k), LALR(k))).  The k identifies the number of tokens of lookahead.  We 
will usually only concern ourselves with 0 or 1 tokens of lookahead, but the techniques 
do generalize to k > 1.  The different classes of parsers all operate the same way (as 
shown above, being driven by their action and goto tables), but they differ in how their 
action and goto tables are constructed, and the size of those tables. 
 
We will consider LR(0) parsing first, which is the simplest of all the LR parsing methods. 
It is also the weakest and although of theoretical importance, it is not used much in 
practice because of its limitations.  LR(0) parses without using any lookahead at all. 
Adding just one token of lookahead to get LR(1) vastly increases the parsing power. 
Very few grammars can be parsed with LR(0), but most unambiguous CFGs can be 
parsed with LR(1).  The drawback of adding the lookahead is that the algorithm becomes 
somewhat more complex and the parsing table gets much, much bigger.  The full LR(1) 
parsing table for a typical programming language has many thousands of states 
compared to the few hundred needed for LR(0).  A compromise in the middle is found 
in the two variants SLR(1) and LALR(1) which also use one token of lookahead but 
employ techniques to keep the table as small as LR(0).  SLR(k) is an improvement over 
LR(0) but much weaker than full LR(k) in terms of the number of grammars for which it 
is applicable.  LALR(k) parses a larger set of languages than SLR(k) but not quite as 
many as LR(k).  LALR(1) is the method used by the yacc parser generator. 
 
In order to begin to understand how LR parsers work, we need to delve into how their 
tables are derived.  The tables contain all the information that drives the parser.  As an 
example, we will show how to construct an LR(0) parsing table since they are the 
simplest and then discuss how to do SLR(1), LR(1), and LALR(1) in later handouts. 
 
The essence of LR parsing is identifying a handle on the top of the stack that can be 
reduced.  Recognizing a handle is actually easier than predicting a production was in 
top-down parsing.  The weakness of LL(k) parsing techniques is that they must be able 
to predict which product to use, having seen only k symbols of the right-hand side.  For 
LL(1), this means just one symbol has to tell all.  In contrast, for an LR(k) grammar is 
able to postpone the decision until it has seen tokens corresponding to the entire right-
hand side (plus k more tokens of lookahead).  This doesn’t mean the task is trivial.  More 
than one production may have the same right-hand side and what looks like a right-
hand side may not really be because of its context.  But in general, the fact that we see 
the entire right side before we have to commit to a production is a useful advantage. 
 
Constructing LR(0) parsing tables 
Generating an LR parsing table consists identifying the possible states and arranging the 
transitions among them.  At the heart of the table construction is the notion of an LR(0) 
configuration or item.  A configuration is a production of the grammar with a dot at some 
position on its right side.  For example, A  –> XYZ has four possible items: 
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 A  –> •XYZ 
 A  –> X•YZ 
 A  –> XY•Z 
 A  –> XYZ• 
 
This dot marks how far we have gotten in parsing the production.  Everything to the left 
of the dot has been shifted onto the parsing stack and next input token is in the First set 
of the symbol after the dot (or in the follow set if that symbol is nullable).  A dot at the 
right end of a configuration indicates that we have that entire configuration on the stack 
i.e., we have a handle that we can reduce.  A dot in the middle of the configuration 
indicates that to continue further, we need to shift a token that could start the symbol 
following the dot.  For example, if we are currently in this position: 
 
 A  –> X•YZ 
 
We want to shift something from First(Y) (something that matches the next input token).  
Say we have productions Y  –> u | w.  Given that, these three productions all correspond 
to the same state of the shift-reduce parser: 
 
 A  –> X•YZ 
 Y  –> •u 
 Y  –> •w 
 
At the above point in parsing, we have just recognized an X and expect the upcoming 
input to contain a sequence derivable from YZ.  Examining the expansions for Y, we 
furthermore expect the sequence to be derivable from either u or w.  We can put these 
three items into a set and call it a configurating set of the LR parser.  The action of adding 
equivalent configurations to create a configurating set is called closure.  Our parsing 
tables will have one state corresponding to each configurating set. 
 
These configurating sets represent states that the parser can be in as it parses a string.  
Each state must contain all the items corresponding to each of the possible paths that are 
concurrently being explored at that point in the parse.  We could model this as a finite 
automaton where we move from one state to another via transitions marked with a 
symbol of the CFG.  For example: 
 

A –> X•YZ Y A –> XY•Z 
 
Recall that we push states onto the stack in a LR parser.  These states describe what is on 
the stack so far.  The state on top of the stack (potentially combined with some 
lookahead) enables us to figure out whether we have a handle to reduce, or whether we 
need to read the next input token and shift a new state on top of the stack.  We shift until 
we reach a state where the dot is at the end of a production, at which point we reduce.  
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This finite automaton is the basis for a LR parser: each time we perform a shift we are 
following a transition to a new state. 
Now for the formal rule for what to put in a configurating set.  We start with a 
configuration: 
 
  A  –> X1...Xi • Xi+1...Xj 
 
which we place in the configurating set.  We then perform the closure operation on the 
items in the configurating set.  For each item in the configurating set where the dot 
precedes a nonterminal, we add configurations derived from the productions defining 
that nonterminal with the dot at the start of the right side of those productions.  So, if we 
have 
  Xi+1  –> Y1...Yg | Z1...Zh 
 
in the above example, we would add the following to the configurating set. 
 
  Xi+1  –> • Y1...Yg 
  Xi+1  –> • Z1...Zh 
 
We repeat this operation for all configurations in the configurating set where a dot 
precedes a nonterminal until no more configurations can be added.  So, if Y1 and Z1 are 
terminals in the above example, we would just have the three productions in our 
configurating set.  If they are nonterminals, we would need to add the Y1 and Z1 
productions as well. 
 
In summary, to create a configurating set for the starting configuration A –> •u, we 
follow the closure operation: 
 

1. A –> •u is in the configurating set 
2. If u begins with a terminal, we are done with this production 
3. If u begins with a nonterminal B, add all productions with B on the left side, with 

the dot at the start of the right side: B –> •v 
4. Repeat steps 2 and 3 for any productions added in step 3. Continue until you 

reach a fixed point. 

The other information we need to build our tables is the transitions between 
configurating sets.  For this, we define the successor function.  Given a configurating set C 
and a grammar symbol X, the successor function computes the successor configurating 
set C' = successor(C,X).  The successor function describes what set the parser moves to 
upon recognizing a given symbol. 
 
The successor function is quite simple to compute.  We take all the configurations in C 
where there is a dot preceding X, move the dot past X and put the new configurations in 
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C', then we apply the closure operation to C'.  The successor configurating set C' 
represents the state we move to when encountering symbol X in state C. 
 
The successor function is defined to only recognize viable prefixes.  There is a transition 
from A –> u•xv to A –> ux•v on the input x.  If what was already being recognized as a 
viable prefix and we've just seen an x, then we can extend the prefix by adding this 
symbol without destroying viability.  
 
Here is an example of building a configurating set, performing closure, and computing 
the successor function. Consider the following item from our example expression 
grammar: 
 
  E  –> E •+ T  
 
To obtain the successor configurating set on + we first put the following configuration in 
C':  
  E  –> E +•T  
 

We then perform a closure on this set: 
 
  E  –> E +•T  
  T  –> •(E)  
  T  –> • id 
   
Now, to create the action and goto tables, we need to construct all the configurating sets 
and successor functions for the expression grammar.  At the highest level, we want to 
start with a configuration with a dot before the start symbol and move to a configuration 
with a dot after the start symbol.  This represents shifting and reducing an entire 
sentence of the grammar.  To do this, we need the start symbol to appear on the right 
side of a production.  This may not happen in the grammar so we modify it.  We create 
an augmented grammar by adding the production: 
 
  S'  –> • S 
 
where S is the start symbol.  So we start with the initial configurating set C0 which is the 
closure of S'  –> •S.  The augmented grammar for the example expression grammar: 
 
 0) E' –> E 
 1) E  –> E + T  
 2) E  –> T 
 3) T  –> (E)  
 4) T  –> id 
 
We create the complete family F of configurating sets as follows: 
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1. Start with F containing the configurating set C0, derived from the configuration  
S'  –> • S 

2. For each configurating set C in F and each grammar symbol X such that 
successor(C,X) is not empty, add successor(C,X) to F 

3. Repeat step 2 until no more configurating sets can be added to F 
 

Here is the full family of configurating sets for the grammar given above. 
 

 Configurating set Successor 
I0: E' –> •E I1 
 E  –> •E+T I1 
 E  –> •T I2 
 T –> •(E) I3 
 T  –> •id I4 
 
I1:  E' –> E• Accept 
 E  –> E•+T I5 
 
I2:  E  –> T• Reduce 2 

 
I3:  T –> (•E) I6 
 E  –> •E+T I6 
 E  –> •T I2 
 T  –> •(E) I3 
 T –> •id I4 
  
I4: T  –> id• Reduce 4 
  
I5:  E  –> E+•T I8 
 T  –> •(E) I3 
 T –> •id I4 
 
I6:  T  –> (E•) I7 
 E  –> E•+T I5 
 
I7:  T –> (E)• Reduce 3 
 
I8:  E  –> E+T• Reduce 1 
 

Note that the order of defining and numbering the sets is not important; what is 
important is that all the sets are included. 
 
A useful means to visualize the configurating sets and successors is with a diagram like 
the one shown below.  The transitions mark the successor relationship between sets. We 
call this a goto-graph or transition diagram. 
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To construct the LR(0) table, we use the following algorithm.  The input is an augmented 
grammar G' and the output is the action/goto tables: 
 

1. Construct F = {I0, I1, ... In}, the collection of configurating sets for G'. 
2. State i is determined from Ii.  The parsing actions for the state are determined as 

follows: 
a) If A –> u• is in Ii then set Action[i,a] to reduce A –> u for all input. (A not 

equal to S'). 
b) If S' –> S• is in Ii then set Action[i,$] to accept. 
c) If A –> u•av is in Ii and successor(Ii, a) = Ij, then set Action[i,a] to shift j (a is a 

terminal). 

E' -> •E 
E -> • E + T 
E -> • T 
T -> •(E) 
T -> •id 

E' -> E• 
E -> E• + T 

T -> (•E) 
E -> • E + T 
E -> • T 
T -> •(E) 
T -> •id 
 

T -> id• 

E -> E + •T 
T -> •(E) 
T -> •id 

E -> E + T• 

T -> (E)• 

id 

( 

E T 

E 

id 

T 

I0 

I1 

I3 

I4 

I2 

I5 

I7 
T -> (E•) 
E -> E• + T 

E –> T• 

( 

I6 

I8 

( 

T 

id 

+ 

+ 

) 



  13  

3. The goto transitions for state i are constructed for all nonterminals A using the rule: 
If successor(Ii, A) = Ij, then Goto [i, A] = j. 

4. All entries not defined by rules 2 and 3 are errors. 
5. The initial state is the one constructed from the configurating set containing S'  –> 

•S. 
 
Notice how the shifts in the action table and the goto table are just transitions to new 
states.  The reductions are where we have a handle on the stack that we pop off and 
replace with the nonterminal for the handle; this occurs in the states where the • is at the 
end of a production. 
 
At this point, we should go back and look at the parse of id + (id) from earlier in the 
handout and trace what the states mean. (Refer to the action and goto tables and the 
parse diagrammed on page 4 and 5). 
 
Here is the parse (notice it is an reverse rightmost derivation, if you read from the 
bottom upwards, it is always the rightmost nonterminal that was operated on). 
 

id + (id) T –> id 
T + (id) E –> T 
E + (id) T –> id 
E + (T) E –> T 
E + (E) T –> (E) 
E + T  E –> E+T 
E   E' –> E 
E' 

 
Now let’s examine the action of the parser.  We start by pushing s0 on the stack.  The 
first token we read is an id.  In configurating set I0, the successor of id is set I4, this means 
pushing s4 onto the stack.  This is a final state for id (the • is at the end of the production) 
so we reduce the production T –> id.  We pop s4 to match the id being reduced and we 
are back in state s0.  We reduced the handle into a T, so we use the goto part of the table, 
and Goto[0, T] tells us to push s2 on the stack. (In set I0, the successor for T was set I2).  In 
set I2, the action is to reduce E –> T, so we pop off the s2 state and are back in s0.  Goto[0, 
E] tells us to push s1.  From set I1 seeing a + takes us to set I5 (push s5 on the stack).  
 
From set I5 we read an open ( which that takes us to set I3 (push s3 on the stack).  We 
have an id coming up and so we shift state s4.  Set 4 reduces T –> id, so we pop s4 to 
remove right side and we are back in state s3.  We use the goto table Goto[3, T] to get to 
set I2.  From here we reduce E –> T, pop s2 to get back to state s3 now we goto s6. .   
Action[6, )] tells us to shift s7.  Now in s7 we reduce T –> (E).  We pop the top three states 
off (one for each symbol in the right-hand side of the production being reduced) and we 
are back in s5 again.  Goto[5,T] tells us to push s8.  We reduce by E –> E + T which pops 
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off three states to return to s0.  Because we just reduced E we goto s1.  The next input 
symbol is $ means we completed the production E' –> E and the parse is successful. 
 
The stack allows us to keep track of what we have seen so far and what we are in the 
middle of processing.  We shift states that represent the amalgamation of the possible 
options onto the stack until we reach the end of a production in one of the states.  Then 
we reduce.  After a reduce, states are popped off the stack to match the symbols of the 
matching right-side.  What's left on the stack is what we have yet to process. 
Consider what happens when we try to parse id++.  We start in s0 and do the same as 
above to reduce the id to T and then to E.  Now we are in set I5 and we encounter another 
+.  This is an error because the action table is empty for that transition.  There is no 
successor for + from that configurating set, because there is no viable prefix that begins 
E++. 
 
Subset construction and closure 
You may have noticed a similarity between subset construction and the closure 
operation.  If you think back to a few lectures, we explored the subset construction 
algorithm for converting an NFA into a DFA.  The basic idea was create new states that 
represent the non-determinism by grouping the possibilities that look the same at that 
stage and only diverging when you get more information.  The same idea applies to 
creating the configurating sets for the grammar and the successor function for the 
transitions.  We create a NFA whose states are all the different individual configurations.  
We put all the initial configurations into one start state.  Then draw all the transitions 
from this state to the other states where all the other states have only one configuration 
each.  This is the NFA we do subset construction on to convert into a DFA.  Here is a 
simple example starting from the grammar consisting of strings with one or more a’s: 
 
 1) S' –> S 
 2) S –> Sa   
 3) S –> a 
 
Close on the augmented production and put all those configurations in a set: 

S' -> •S

S -> •Sa

S -> •a

S' -> S•

S -> S•a

S -> a•

S -> Sa•

S

S a

a

 
Do subset construction on the resulting NFA to get the configurating sets: 
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S' -> •S

S -> •Sa

S -> •a

S' -> S•

S -> S•a

S -> a•

S -> Sa•
S a

a

I0
I1

I3

I2

 
 
Interesting, isn't it, to see the parallels between the two processes?  They both are 
grouping the possibilities into states that only diverge once we get further along and can 
be sure of which path to follow. 
 
Limitations of LR(0) Parsing 
The LR(0) method may appear to be a strategy for creating a parser that can handle any 
context-free grammar, but in fact, the grammars we used as examples in this handout 
were specifically selected to fit the criteria needed for LR(0) parsing.  Remember that 
LR(0) means we are parsing with zero tokens of lookahead.  The parser must be able to 
determine what action to take in each state without looking at any further input 
symbols, i.e. by only considering what the parsing stack contains so far.  In an LR(0) 
table, each state must only shift or reduce.  Thus an LR(0) configurating set cannot have 
both shift and reduce items, and can only have exactly one reduce item.  This turns out 
to be a rather limiting constraint. 
 
To be precise, a grammar is LR(0) if the following two conditions hold: 
 

1. For any configurating set containing the item A –> u•xv there is no complete item B 
–> w• in that set. In the tables, this translates to no shift-reduce conflict on any 
state.  This means the successor function from that set either shifts to a new state or 
reduces, but not both. 

2. There is at most one complete item A –> u• in each configurating set. This 
translates to no reduce-reduce conflict on any state. The successor function has at 
most one reduction. 

 
Very few grammars meet the requirements to be LR(0).  For example, any grammar with 
an ε-rule will be problematic.  If the grammar contains the production A –> ε, then the 
item A –> •ε will create a shift-reduce conflict if there is any other non-null production 
for A.  ε-rules are fairly common programming language grammars, for example, for 
optional features such as type qualifiers or variable declarations. 
 
Even modest extensions to earlier example grammar cause trouble.  Suppose we extend 
it to allow array elements, by adding the production rule T–>id[E].  When we construct 
the configurating sets, we will have one containing the items T–>id• and T–>id•[E] which 
will be a shift-reduce conflict.  Or suppose we allow assignments by adding the 
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productions E –> V = E and V –> id.  One of the configurating sets for this grammar 
contains the items V–>id• and T–>id•, leading to a reduce-reduce conflict. 
 
The above examples show that the LR(0) method is just too weak to be useful.  This is 
caused by the fact that we try to decide what action to take only by considering what we 
have seen so far, without using any information about the upcoming input.  By adding 
just a single token lookahead, we can vastly increase the power of the LR parsing 
technique and work around these conflicts.  There are three ways to use a one token 
lookahead: SLR(1), LR(1) and LALR(1), each of which we will consider in turn in the 
next few lectures. 
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