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What is a grammar? 
A grammar is a powerful tool for describing and analyzing languages.  It is a set of rules 
by which valid sentences in a language are constructed.  Here’s a trivial example of 
English grammar:  
 

sentence –> <subject> <verb-phrase> <object> 
subject –> This | Computers | I  
verb-phrase –> <adverb> <verb> | <verb> 
adverb –> never 
verb –> is | run | am | tell 
object –> the <noun> | a <noun> | <noun> 
noun –> university | world | cheese | lies 
 

Using the above rules or productions, we can derive simple sentences such as these:  
 

This is a university. 
Computers run the world. 
I am the cheese. 
I never tell lies. 
 

Here is a leftmost derivation of the first sentence using these productions. 
 

sentence  –> <subject> <verb-phrase> <object> 
–> This <verb-phrase> <object> 
–> This <verb> <object> 
–> This is <object> 
–> This is a <noun> 
–> This is a university 

 
In addition to several reasonable sentences, we can also derive nonsense like "Computers 
run cheese" and "This am a lies".  These sentences don't make semantic sense, but they 
are syntactically correct because they are of the sequence of subject, verb-phrase, and 
object.  Formal grammars are a tool for syntax, not semantics.  We worry about 
semantics at a later point in the compiling process.  In the syntax analysis phase, we 
verify structure, not meaning. 
 
Vocabulary 
We need to review some definitions before we can proceed: 
 
grammar a set of rules by which valid sentences in a language are constructed.  
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nonterminal a grammar symbol that can be replaced/expanded to a sequence of 
symbols. 

terminal an actual word in a language; these are the symbols in a grammar that 
cannot be replaced by anything else. "terminal" is supposed to conjure 
up the idea that it is a dead-end—no further expansion is possible. 

production a grammar rule that describes how to replace/exchange symbols.  The 
general form of a production for a nonterminal is: 

  
 X –>Y1Y2Y3...Yn 
 

 The nonterminal X is declared equivalent to the concatenation of the 
symbols Y1Y2Y3...Yn.  The production means that anywhere where we 
encounter X, we may replace it by the string Y1Y2Y3...Yn.  Eventually we 
will have a string containing nothing that can be expanded further, i.e., it 
will consist of only terminals.  Such a string is called a sentence.  In the 
context of programming languages, a sentence is a syntactically correct 
and complete program. 

derivation a sequence of applications of the rules of a grammar that produces a 
finished string of terminals.  A leftmost derivation is where we always 
substitute for the leftmost nonterminal as we apply the rules (we can 
similarly define a rightmost derivation).  A derivation is also called a 
parse. 

start symbol a grammar has a single nonterminal (the start symbol) from which all 
sentences derive:  

 
 S –> X1X2X3...Xn 
 

All sentences are derived from S by successive replacement using the 
productions of the grammar. 

null symbol  ε it is sometimes useful to specify that a symbol can be replaced by 
nothing at all.  To indicate this, we use the null symbol ε, e.g., A –> B | ε. 

BNF a way of specifying programming languages using formal grammars 
and production rules with a particular form of notation (Backus-Naur 
form). 

 
A few grammar exercises to try on your own (The alphabet in each case is {a,b}.) 

o Define a grammar for the language of strings with one or more a's followed by 
zero or more b's.  

o Define a grammar for even-length palindromes. 
o Define a grammar for strings where the number of a's is equal to the number b's.   
o Define a grammar where the number of a's is not equal to the number b's.  (Hint: 

think about it as two separate cases...) 
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(Can you write regular expressions for these languages? Why or why not?) 
 
Parse Representation 
In working with grammars, we can represent the application of the rules to derive a 
sentence in two ways.  The first is a derivation as shown earlier for "This is a university" 
where the rules are applied step-by-step and we substitute for one nonterminal at a time.  
Think of a derivation as a history of how the sentence was parsed because it not only 
includes which productions were applied, but also the order they were applied (i.e., 
which nonterminal was chosen for expansion at each step).  There can many different 
derivations for the same sentence (the leftmost, the rightmost, and so on). 
 
A parse tree is the second method for representation.  It diagrams how each symbol 
derives from other symbols in a hierarchical manner.  Here is a parse tree for "This is a 
university": 
 
 

 

 

 

Although the parse tree includes all of the productions that were applied, it does not 
encode the order they were applied. For an unambiguous grammar (we’ll define 
ambiguity in a minute), there is exactly one parse tree for a particular sentence. 
 
More Definitions 
Here are some other definitions we will need, described in reference to this example 
grammar: 
 

S –>  AB 
A –> Ax | y 
B –> z 

 

alphabet  
The alphabet is {S, A, B, x, y, z}.  It is divided into two disjoint sets.  The terminal 
alphabet consists of terminals, which appear in the sentences of the language:  
{x, y, z}.  The remaining symbols are the nonterminal alphabet; these are the 
symbols that appear on the left side of productions and can be replaced during 
the course of a derivation: {S, A, B}.  Formally, we use V for the alphabet, T for the 
terminal alphabet and N for the nonterminal alphabet giving us: V = T ∪ N, and 
T ∩ N = ∅. 

s 

 v-p 
 

subject 

This verb 

is 

object 

a noun 

university 
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The convention used in our lecture notes are a sans-serif font for grammar 
elements, lowercase for terminals, uppercase for nonterminals, and underlined 
lowercase (e.g., u, v) to denote arbitrary strings of terminal and nonterminal 
symbols (possibly null).  In some textbooks, Greek letters are used for arbitrary 
strings of terminal and nonterminal symbols (e.g., α, β) 

context-free grammar  
To define a language, we need a set of productions, of the general form: u –> v.  In 
a context-free grammar, u is a single nonterminal and v is an arbitrary string of 
terminal and nonterminal symbols.  When parsing, we can replace u by v 
wherever it occurs.  We shall refer to this set of productions symbolically as P. 

formal grammar  
We formally define a grammar as a 4-tuple {S, P, N, T}. S is the start symbol and S 
∈ N, P is the set of productions, and N and T are the nonterminal and terminal 
alphabets.  A sentence is a string of symbols in T derived from S using one or 
more applications of productions in P. A string of symbols derived from S but 
possibly including nonterminals is called a sentential form or a working string.  
A production u –> v is used to replace an occurrence of u by v.  Formally, if we 
apply a production p ∈ P to a string of symbols w in V to yield a new string of 
symbols z in V, we say that z derived from w using p, written as follows: w =>p  z. 
We also use:  
 
 w => z  z derives from w (production unspecified) 
 w =>*  z z derives from w using zero or more productions 
 w =>+  z z derives from w using one or more productions 
 

equivalence  
The language L(G) defined by grammar G is the set of sentences derivable using 
G.  Two grammars G and G' are said to be equivalent if the languages they 
generate, L(G) and L(G'), are the same.  

 
Grammar Hiearchy 
We owe a lot of our understanding of grammars to the work of the American linguist 
Noam Chomsky (yes, the Noam Chomsky known for his politics).  There are four 
categories of formal grammars in the Chomsky Hierarchy, they span from Type 0, the 
most general, to Type 3, the most restrictive.  More restrictions on the grammar make it 
easier to describe and efficiently parse, but reduce the expressive power. 
 

Type 0: free or unrestricted grammars 
These are the most general.  Productions are of the form u –> v where both u 
and v are arbitrary strings of symbols in V, with u non-null.  There are no 
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restrictions on what appears on the left or right-hand side other than the left-
hand side must be non-empty. 

 
Type 1: context-sensitive grammars 

Productions are of the form uXw –> uvw where u, v and w are arbitrary strings of 
symbols in V, with v non-null, and X a single nonterminal.  In other words, X 
may be replaced by v but only when it is surrounded by u and w. (i.e., in a 
particular context).  

 
Type 2: context-free grammars 

Productions are of the form X–> v where v is an arbitrary string of symbols in V, 
and X is a single nonterminal.  Wherever you find X, you can replace with v 
(regardless of context). 

 
Type 3: regular grammars 

Productions are of the form X–> a, X–> aY, or X–>ε where X and Y are 
nonterminals and a is a terminal.  That is, the left-hand side must be a single 
nonterminal and the right-hand side can be either empty, a single terminal by 
itself or with a single nonterminal.  These grammars are the most limited in 
terms of expressive power. 

 
Every type 3 grammar is a type 2 grammar, and every type 2 is a type 1 and so on. Type 
3 grammars are particularly easy to parse because of the lack of recursive constructs. 
Efficient parsers exist for many classes of Type 2 grammars. Although Type 1 and Type 0 
grammars are more powerful than Type 2 and 3, they are far less useful since we cannot 
create efficient parsers for them.  In designing programming languages using formal 
grammars, we will use Type 2 or context-free grammars, often just abbreviated as CFG. 
 
Issues in parsing context-free grammars 
There are several efficient approaches to parsing most Type 2 grammars and we will talk 
through them over the next few lectures.  However, there are some issues that can 
interfere with parsing that we must take into consideration when designing the 
grammar.  Let’s take a look at three of them: ambiguity, recursive rules, and left-
factoring. 
 
Ambiguity 
If a grammar permits more than one parse tree for some sentences, it is said to be 
ambiguous.  For example, consider the following classic arithmetic expression grammar: 
 

E –>  E op E | ( E ) | int 
op –> + | - | * | / 
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This grammar denotes expressions that consist of integers joined by binary operators 
and possibly including parentheses.  As defined above, this grammar is ambiguous 
because for certain sentences we can construct more than one parse tree.  For example, 
consider the expression 10 – 2 * 5.  We parse by first applying the production E –> E op E. 
The parse tree on the left chooses to expand that first op to *, the one on the right to -. We 
have two completely different parse trees. Which one is correct? 
 
 
 
 
 
 
 
 
   
 
Both trees are legal in the grammar as stated and thus either interpretation is valid. 
Although natural languages can tolerate some kind of ambiguity (e.g., puns, plays on 
words, etc.), it is not acceptable in computer languages.  We don’t want the compiler just 
haphazardly deciding which way to interpret our expressions!  Given our expectations 
from algebra concerning precedence, only one of the trees seems right.  The right-hand 
tree fits our expectation that * "binds tighter" and for that result to be computed first then 
integrated in the outer expression which has a lower precedence operator. 
 
It’s fairly easy for a grammar to become ambiguous if you are not careful in its 
construction.  Unfortunately, there is no magical technique that can be used to resolve all 
varieties of ambiguity.  It is an undecidable problem to determine whether any grammar 
is ambiguous, much less to attempt to mechanically remove all ambiguity. However, 
that doesn't mean in practice that we cannot detect ambiguity or do something about it.  
For programming language grammars, we usually take pains to construct an 
unambiguous grammar or introduce additional disambiguating rules to throw away the 
undesirable parse trees, leaving only one for each sentence. 
 
Using the above ambiguous expression grammar, one technique would leave the 
grammar as is, but add disambiguating rules into the parser implementation.  We could 
code into the parser knowledge of precedence and associativity to break the tie and force 
the parser to build the tree on the right rather than the left.  The advantage of this is that 
the grammar remains simple and less complicated.  But as a downside, the syntactic 
structure of the language is no longer given by the grammar alone. 
 
Another approach is to change the grammar to only allow the one tree that correctly 
reflects our intention and eliminate the others. For the expression grammar, we can 
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separate expressions into multiplicative and additive subgroups and force them to be 
expanded in the desired order. 
  

E –> E t_op E | T 
t_op –> + | -  
T –> T f_op T | F 
f_op –> * | / 
F –>  (E) | int  
 

Terms are addition/subtraction expressions and factors used for multiplication and 
division.  Since the base case for expression is a term, addition and subtraction will 
appear higher in the parse tree, and thus receive lower precedence. 
 
After verifying that the above re-written grammar has only one parse tree for the earlier 
ambiguous expression, you might thing we were home free, but now consider the 
expression 10 –2 –5.  The recursion on both sides of the binary operator allows either 
side to match repetitions.  The arithmetic operators usually associate to the left, so by 
replacing the right-hand side with the base case will force the repetitive matches onto the 
left side.  The final result is: 
 

E –> E t_op T | T 
t_op –> + | -  
T –> T f_op F | F 
f_op –> * | / 
F –>  (E) | int  
 

Whew!  The obvious disadvantage of changing the grammar to remove ambiguity is that 
it may complicate and obscure the original grammar definitions.  There is no mechanical 
means to change any ambiguous grammar into an unambiguous one (undecidable, 
remember?)  However, most programming languages have only limited issues with 
ambiguity that can be resolved using ad hoc techniques. 
 
Recursive productions 
Productions are often defined in terms of themselves.  For example a list of variables in a 
programming language grammar could be specified by this production: 
 

variable_list –> variable | variable_list , variable 
 
Such productions are said to be recursive.  If the recursive nonterminal is at the left of the 
right-side of the production, e.g. A –> u | Av, we call the production left-recursive. 
Similarly, we can define a right-recursive production: A –> u | vA.  Some parsing 
techniques have trouble with one or the other variants of recursive productions and so 
sometimes we have to massage the grammar into a different but equivalent form.  Left-
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recursive productions can be especially troublesome in the top-down parsers (and we’ll 
see why a bit later).  Handily, there is a simple technique for rewriting the grammar to 
move the recursion to the other side.  For example, consider this left-recursive rule: 
 

X –>  Xa | Xb | AB | C | DEF 
          
To convert the rule, we introduce a new nonterminal X' that we append to the end of all 
non-left-recursive productions for X.  The expansion for the new nonterminal is basically 
the reverse of the original left-recursive rule.  The re-written productions are: 
 

X  –>  ABX'  | CX' | DEFX' 
X'  –> aX' | bX' | ε 

 
It appears we just exchanged the left-recursive rules for an equivalent right-recursive 
version.  This might seem pointless, but some parsing algorithms prefer or even require 
only left or right recursion. 
 
Left-factoring 
The parser usually reads tokens from left to right and it is convenient if, upon reading a 
token, it can make an immediate decision about which production from the grammar to 
expand.  However, this can be trouble if there are productions that have common first 
symbol(s) on the right side of the productions.  Here is an example we often see in 
programming language grammars: 
 

Stmt –> if Cond then Stmt else Stmt  | if Cond then Stmt |  Other   | ....  
 

The common prefix is if Cond then Stmt.  This causes problems because when a parser 
encounter an “if”, it does not know which production to use.  A useful technique called 
left-factoring allows us to restructure the grammar to avoid this situation.  We rewrite the 
productions to defer the decision about which of the options to choose until we have 
seen enough of the input to make the appropriate choice.  We factor out the common 
part of the two options into a shared rule that both will use and then add a new rule that 
picks up where the tokens diverge. 
 

Stmt –> if Cond then Stmt OptElse  |  Other  | … 
OptElse –> else  S  |  ε 

 
In the re-written grammar, upon reading an “if” we expand first production and wait 
until if Cond then Stmt has been seen to decide whether to expand OptElse to else or ε.  
 
Hidden left-factors and hidden left recursion 
A grammar may not appear to have left recursion or left factors, yet still have issues that 
will interfere with parsing.  This may be because the issues are hidden and need to be 
first exposed via substitution. 
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For example, consider this grammar: 
 

A –>  da | acB 
B –>  abB | daA | Af 
 

A cursory examination of the grammar may not detect that the first and second 
productions of B overlap with the third. We substitute the expansions for A into the 
third production to expose this: 
 

A –>  da | acB 
B –>  abB | daA | daf | acBf 
 

This exchanges the original third production of B for several new productions, one for 
each of the productions for A. These directly show the overlap, and we can then left-
factor: 
 

A –>  da | acB 
B –>  aM | daN 
M –> bB | cBf 
N –> A | f 
 

Similarly, the following grammar does not appear to have any left-recursion: 
 

S –>  Tu | wx 
T –> Sq | vvS 
 

Yet after substitution of S into T, the left-recursion comes to light: 
 

S –>  Tu | wx 
T –> Tuq | wxq | vvS 
 

If we then eliminate left-recursion, we get: 
 

S –>  Tu | wx 
T –> wxqT' | vvST' 
T' –> uqT' | ε 
 

Programming language case study: ALGOL 
Algol is of interest to us because it was the first programming language to be defined 
using a grammar.  It grew out of an international effort in the late 1950’s to create a 
"universal programming language" that would run on all machines.  At that time, 
FORTRAN and COBOL were the prominent languages, with new languages sprouting 
up all around.  Programmers became increasingly concerned about portability of 
programs and being able to communicate with one another on programming topics. 
 
Consequently the ACM and GAMM (Gesellschaft für angewandte Mathematik und 
Mechanik) decided to come up with a single programming language that all could use 
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on their computers, and in whose terms programs could be communicated between the 
users of all machines.  Their first decision was not to use FORTRAN as their universal 
language.  This may seem surprising to us today, since it was the most commonly used 
language back then.    However, as Alan J. Perlis, one of the original committee 
members, puts it: 
 

"Today, FORTRAN is the property of the computing world, but in 1957, it 
was an IBM creation and closely tied to IBM hardware.  For these reasons, 
FORTRAN was unacceptable as a universal language." 

 
ALGOL-58 was the first version of the language, followed up very soon after by 
ALGOL-60, which is the version that had the most impact.  As a language, it introduced 
the following features: 
 

o block structure and nested structures 
o strong typing 
o scoping 
o procedures and functions 
o call by value, call by reference 
o side effects (is this good or bad?) 
o recursion 

 
It may seem surprising that recursion was not present in the original FORTRAN or 
COBOL.  You probably know that to implement recursion we need a runtime stack to 
store the activation records as functions are called.  In FORTRAN and COBOL, 
activation records were created at compile time, not runtime.  Thus, only one activation 
record per subroutine was created.  No stack was used.  The parameters for the 
subroutine were copied into the activation record and that data area was used for 
subroutine processing. 
 
The ALGOL report was the first time we see BNF to describe a programming language.  
Both John Backus and Peter Naur were on the ALGOL committees.  They derived this 
description technique from an earlier paper written by Backus.  The technique was 
adopted because they needed a machine-independent method of description.  If one 
looks at the early definitions of FORTRAN, one can see the links to the IBM hardware.  
With ALGOL, the machine was not relevant.  BNF had a huge impact on programming 
language design and compiler construction.  First, it stimulated a large number of 
studies on the formal structure of programming languages laying the groundwork for a 
theoretical approach to language design.  Second, a formal syntactic description could be 
used to drive a compiler directly (as we shall see). 
 
ALGOL had a tremendous impact on programming language design, compiler 
construction, and language theory, but the language itself was a commercial failure. 
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Partly this was due to design decisions (overly complex features, no IO) along with the 
politics of the time (popularity of Fortran, lack of support from the all-powerful IBM, 
resistance to BNF). 
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