. %uQ_ T (Vov’, WQ@?

H__/—-/ CHAPTER 4. SYNTAX ANALYSIS
On the other hand, the language L = {a™b" | n > 1} with an equal number
?- -‘Ob of a’s and b’s is a prototypical example of a language that can be described
P by a grammar but not by a regular expression. To see why, suppose L were

the language defined by some regular expression. We could construct a DFA D
with a finite number of states, say k, to accept L. Since D has only k states, for
‘) an input beginning with more than k a’s, D must enter some state twice, say
W) s;, as in Fig. 4.6. Suppose that the path from s; back to itself is labeled with

J W~ a sequence a’ ', Since a’b® is in the language, there must be a path labeled b’
N from s; to an accepting state f. But, then there is also a path from the initial

i_ T[, R y; state s through s; to f labeled a/b?, as shown in Fig. 4.6. Thus, D also accepts
a’b’, which is not in the language, contradicting the assumption that L is the

(ﬁ‘ language accepted by D.
path labeled o’/ ¢

. path labeled o path labeled b .

Figure 4.6: DFA D accepting both a'b* and a/b’.

Colloquially, we say that “finite automata cannot count,” meaning that
a finite automaton cannot accept a language like {a™" |n > 1} that would
require it to keep count of the number of a’s before it sees the b’s. Likewise, “a
grammar can count two items but not three,” as we shall see when we consider
non-context-free language constructs in Section 4.3.5.

4.2.8 Exercises for Section 4.2
Exercise 4.2.1: Consider the context-free grammar:
S - SS+]SS5 %]a
and the string aa + a*.
a) Give a leftmost derivation for the string.
b) Give a rightmost derivation for the string.
c) Give a parse tree for the string.
!'d) Is the grammar ambiguous or unambiguous? Justify your answer.
! e) Describe the language generated by this grammar.

Exercise 4.2.2: Repeat Exercise 4.2.1 for each of the following grammars and
strings:

e

4.2. CONTEXT-FREE GRAMMARS 207

a) S — 0.51]01 with string 000111.

hy S = + SS5| x SS|a with string + * aaa.

te) S = S§(S)S|ewith string (()()).
'd) S = S+ S|SS](S8)|S * | awith string (a + a) * a.
te) § = (L)laand L = L, S |S with string ((a,a), a, (a)).

NS = aSbS|bSasS|e with string aabbab.

! 2) The following grammar for boolean expressions:

bexpr — bexpr or bterm | bterm
bterm — bterm and bfactor | bfactor
bfactor — mot bfactor | (bezpr) | true | false

Exercise 4.2.3: Design grammars for the following languages:

a) The set of all strings of Os and 1s such that every 0 is immediately followed
by at least one 1.

!'b) The set of all strings of Os and 1s that are palindromes; that is, the string
reads the same backward as forward.

!'c) The set of all strings of Os and 1s with an equal number of Os and 1s.
11d) The set of all strings of Os and 1s with an unequal number of 0s and Is.

Ye) The set of all strings of 0s and 1s in which 011 does not appear as a
substring.

' f) The set of all strings of 0s and 1s of the form zy, where x #y and xr and
y are of the same length.

! Exercise 4.2.4: There is an extended grammar notation in common use. In
this notation, square and curly braces in production bodies are metasymbols
(like — or |) with the following meanings:

i) Square braces around a grammar symbol or symbols denotes that these
constructs are optional. Thus, production 4 - X [V] Z has the same
effect as the two productions 4 - X'V Zand 4 —» X Z.

it) Curly braces around a grammar symbol or symbols says that these sym-
bols may be repeated any number of times, including zero times. Thus,
A = X {Y Z} has the same effect as the infinite sequence of productions
A X A XY Z A XY ZY Z, and so on.

VALYSIS

!

synch
E—e
synch
M"e

svnch

5 417

achanism

parser

portant
ve error
3 where

4.4. TOP-DOWN PARSING 231

Phrase-level Recovery

Phrase-level error recovery is implemented by filling in the blank entries in
the predictive parsing table with pointers to error routines. These routines
may change, insert, or delete symbols on the input and issue appropriate error
messages. They may also pop from the stack. Alteration of stack symbols or the
pushing of new symbols onto the stack is questionable for several reasons. First,
the steps carried out by the parser might then not correspond to the derivation
of any word in the language at all. Second, we must ensure that there is no
possibility of an infinite loop. Checking that any recovery action eventually
results in an input symbol being consumed (or the stack being shortened if the
end of the input has been reached) is a good way to protect against such loops.

4.4.6 Exercises for Section 4.4

For each of the following grammars, devise predictive parsers
and show the parsing tables. You may left-factor and /or eliminate left-recursion
from your grammars first.

@The grammar of Exercise 4.2.2(a).
b) The grammar of Exercise 4.2.2(b).

@Fhe grammar of Exercise 4.2.2(c).

d) The grammar of Exercise 4.2.2(d).

e) The grammar of Exercise 4.2.2(e).

@‘he grammar of Exercise 4.2.2(g).

!! Exercise 4.4.2: Is it possible, by modifying the grammar in any way, to con-
struct a predictive parser for the language of Exercise 4.2.1 (postfix expressions
with operand a)?

Compute FIRST and FOLLOW for the grammar of Exercise

4.2.1.

Exercise 4.4.4: Compute FIRST and FOLLOW for each of the grammars of
Exercise 4.2.2.

Exercise 4.4.5: The grammar S — a S a | a a generates all even-length
strings of a’s. We can devise a recursive-descent parser with backtrack for this
grammar. If we choose to expand by production S — a a first, then we shall
only recognize the string aa. Thus, any reasonable recursive-descent parser will
try S — a S a first.

a) Show that this recursive-descent parser recognizes inputs aa, aaaa, and
aaaeaqaa, but not aaaaaa.

240 CHAPTER 4. SYNTAX ANALYSIS
(1) stmt — id (parameter_list)
(2) stmt — expr := expr
(3) parameter_-list — parameter_list , parameter
(4) parameter_list — parameter
(5) parameter — id
(6) ezpr — id (expr.list)
(M expr — id
8) exprlist — expr.list , expr
(9) expr_list - expr

Figure 4.30: Productions involving procedure calls and array references

STACK INPUT
- id (id ,id) .-

It is evident that the id on top of the stack must be reduced, but by which
production? The correct choice is production (5) if p is a procedure, but pro-
duction (7) if p is an array. The stack does not tell which; information in the
symbol table obtained from the declaration of p must be used.

One solution is to change the token id in production (1) to procid and to
use a more sophisticated lexical analyzer that returns the token name procid
when it recognizes a lexeme that is the name of a procedure. Doing so would
require the lexical analyzer to consult the symbol table before returning a token.

If we made this modification, then on processing p(i,j) the parser would
be either in the configuration

STACK INPUT
--- procid (id ,id) -

or in the configuration above. In the former case, we choose reduction by
production (5); in the latter case by production (7). Notice how the symbol
third from the top of the stack determines the reduction to be made, even
though it is not involved in the reduction. Shift-reduce parsing can utilize
information far down in the stack to guide the parse. 0O

4.5.5 _Exercises for Section 4.5

For the grammar S — 0.5 1| 0 1 of Exercise 4.2.2(a).
indicate the handle in each of the following right-sentential forms:

a) 000111.

Repeat Exercise 4.5.1 for the grammar S — S S+ S S * |a
of Exercise 4.2.1 and the following right-sentential forms:

:

Y R

s

P NG G 3 e ey

S P T SRR

RSN I SRR TR SR i A S s

4.6

Ther
LR(k
const:
input
cases
parse
Tl
methc
short)
parse
“item
typice
parsix
Se
LALF

4.6.1

LR p.
tion 4
the m
itively
parse;
on toj

L1

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 241

a) SSS+ax*+.
h) SS+axa+.

c) aaa *a+ +.

Give bottom-up parses for the following input strings and
grammars:

a) The input 000111 according to the grammar of Exercise 4.5.1.

b) The input aaa * a + + according to the grammar of Exercise 4.5.2.

4.6 Introduction to LR Parsing: Simple LR

The most prevalent type of bottom-up parser today is based on a concept called
LR (k) parsing; the “L” is for left-to-right scanning of the input, the “R” for
constructing a rightmost derivation in reverse, and the % for the number of
input symbols of lookahead that are used in making parsing decisions. The
cases k = 0 or k = 1 are of practical interest, and we shall only consider LR
parsers with k <1 here. When (k) is omitted, k is assumed to be 1.

This section introduces the basic concepts of LR parsing and the easiest
method for constructing shift-reduce parsers, called “simple LR” (or SLR, for
short). Some familiarity with the basic concepts is helpful even if the LR
parser itself is constructed using an automatic parser generator. We begin with
“items” and “parser states;” the diagnostic output from an LR parser generator
typically includes parser states, which can be used to isolate the sources of
parsing conflicts. ,

Section 4.7 introduces two, more complex methods — canonical-LR and
LALR — that are used in the majority of LR parsers.

4.6.1 Why LR Parsers?

LR parsers are table-driven, much like the nonrecursive LL parsers of Sec-
tion 4.4.4. A grammar for which we can construct a parsing table using one of
the methods in this section and the next is said to be an LR grammar. Intu-
itively, for a grammar to be LR it is sufficient that a left-to-right shift-reduce
parser be able to recognize handles of right-sentential forms when they appear
on top of the stack.

LR parsing is attractive for a variety of reasons:

* LR parsers can be constructed to recognize virtually all programming-
language constructs for which context-free grammars can be written. Non-
LR context-free grammars exist, but these can generally be avoided for
typical programming-language constructs.

258 CHAPTER 4. SYNTAX ANALYSIS

!'b) The grammar S — S S +

S S x| aof Exercise 4.2.1.

!'c) The grammar S = S (S)| e of Exercise 4.2.2(c).

C E_j_xercise 4.6.2) Construct the SLR sets of items for the (augmented) grammar

of Exercise 4.2.1. Compute the GOTO function for these sets of items. Show
the parsing table for this grammar. 1s the grammar SLR?

Exercise 4.6.3: Show the actions of your parsing table from Exercise 4.6.2 on
the input aa * a+.

ﬁ (Exercise 4.6.43) For each of the (augmented) grammars of Exercige 4.2.2(a)-
(8):

,0,)

a) Construct the SLR sets of items and their GOTO function.
b) Indicate any action conflicts in your sets of items.
¢) Construct the SLR-parsing table, if one exists.

Exercise 4.6.5: Show that the following grammar:

S = dadb|BbBua
A = ¢
B = e

is LL(1) but not SLR(1).

Exercise 4.6.6: Show that the following grammar:

S —- sS4} 4
A = a

is SLR(1) but not, LL(1).
! Exercise 4.6.7: Counsider the family of grammars 7, defined by:

S = A by for 1 <i<n
A a A gy forl<ij<nandi#j

Show that:
a) G, has 2n° — 0 productions.
by (7, has 2" 4+ 07 4 9 sets of LR(0) items.
¢) (G, 08 ST.R1.

Whar does this analysis siov about how Targe LR parsers can get”

e

R —

“rropnnny

Lo

AU TR NP R

7T

BECRR

S
£

=
54

sta
an
Ex

—
-
-~

! Ex

Cor
buil
Wh
tica
pos:

8ym

Afte

com

