114

fi (a == f(x))

- a lexical analyzer cannot tel] whether
an undeclared function identifier. Sine
the lexical analyzer must return the to
phase of the compiler — probably the
due to transposition of the letters.

However, suppose a situation arise
to proceed because none of the patterns for token
remaining input. The simplest recovery
delete successive characters from the re
can find a well-formed token at the begi
technique may confuse the parser, but
it may be quite adequate.

Other possible error-recovery actions are:

strategy is “panic mode” recovery. We
maining input, until the lexical analyzer
nning of what input is left. This recovery
in an interactive computing environment

L. Delete one character from the remaining input.

2. Insert a missing cha.récter into the remaining input.
3. Replace a character by another character.

4. Transpose two adjacent characters.

Transformations like these may
simplest such strategy is to se
be transformed into a valid le
makes sense, since in practice

be tried in an attempt to repair the input. The
e whether a prefix of the remaining input can
xeme by a single transformation. This strategy
most lexical errors involve g, single character. A

tegy is to find the smallest number of transforma-
tions needed to convert the source program into one that consists only of valid

lexemes, but this approach is considered too expensive in practice to be worth
the effort.

3.1.5 Exercises for Section 3.1
Exercise 3.1.1: Divide the following C++ program:

float limitedSquare(x) float x; {

/* returns x-squared, but never more than 100 */

return (x<=—10.0llx>=10.0)?100:x*x;
}

into appropriate lexemes, usin

g the discussion of Section 3.1.2 as 4 guide. Which
lexeme

hould get associated lexical values? What should those values be?

Tagged languages like HTML or XML are different from con-

ation (tags) are either very
n XML). Further, tags can
to divide the following HTML document:

Yo rmming languages in that the punctu
numerous (as in HTML) or a user-definable set (as i
often have parameters. Suggest how

i is a misspelling of the keyword if or
e fiis a valid lexeme for the token id,
ken id to the parser and let some other
parser in this case — handle an error

. . . . and w
s in which the lexical analyzer is unable '

s matches any prefix of the

CHAPTER 3. LEXICAL ANALYS[s 42 INPUT BUFFERING

Here is a photo of x?
<p><IMG SRC = "house:gz
gee <A HREF = "morePix.
1iked that one.<P>

into appropriate lexemes. V\'hicl;
hat should those values be?

e 3.2 Input Buffering

Before discussing the problem of e
some ways that the simple but i

" can be speeded. This task is m

to look one or more characters be

we have the right lexeme. The 1

Tokens” in Section 3.1 gave an ex
where we need to look at least o
we cannot be sure we’ve seen the
that is not a letter or digit, and 1

* C, single-character operators like

two-character operator like ->, ==
scheme that handles large Iookahg
involving “sentinels” that saves ti

3.2.1 Buffer Pairs

Because of the amount of time tak
of characters that must be proces
program, specialized buffering te
amount of overhead required to |
tant scheme involves two buffers 1
Fig. 3.3.

Figure 3.3: Us

Each buffer is of the same size
e.g., 4096 bytes. Using one.syste
into a buffer, rather than using o
characters remain in the input file

-for
lid,
ther
Tror

able
the

o
Zer
ery
St

- < o @

49, INPUT BUFFERING 113

Here is a photo of my house:
<P>

See More Pictures if you
liked that one.<P>

o appropriate lexemes. Which lexemes should get associated lexical values.
% and what should those values be?

 73.2 Input Buffering

‘ Before discussing the problem of recognizing lexemes in the input, let us examine
" gome ways that the simple but important task of reading the source program

can be speeded. This task is made difficult by the fact that we often have
to look one or more characters beyond the next lexeme before we can be sure
we have the right lexeme. The box op “Iricky Problems When Recognizing
Tokens” in Section 3.1 gave an extreme example, but there are many situations

where we need to look at least one additional character ahead. For instance,

3

that is not a letter or digit, and therefore is not part of the lexeme for id. In
- C, single-character operators like =y =, or < could also be the beginning of a

two-character operator like =>, ==, or <=, Thus, we shall introduce a two-buffer

i scheme that handles large lookaheads safely. We then consider an improvement

involving “sentinels” that saves time checking for the ends of buffers.

3.2.1 Buffer Pairs

Because of the amount of time taken to process characters and the large number
of characters that must be processed during the compilation of a large source
program, specialized buffering techniques have been developed to reduce the
amount of overhead required to process a single input character. Ap impor-
tant scheme involves two buffers that are alternately reloaded, as suggested in
Fig. 3.3.

lexemeBegin

Figure 3.3: Using a pair of input buffers
Each buffer is of the same size N, and N ig usually the size of a disk block,
e.g., 4096 bytes. Using one system read command we can read N characters
into a buffer, rather than using one system call per character. If fewer than N
characters remain in the input file, then a special character, represented by eof,

e

: 3 3. SPECIFICATION OF TOKENS 125

3.3.6 [Exercises for Section 3.3

Exercise 3.3.1: Consult the language reference manuals to determine (i) the
sets of characters that form the input alphabet (excluding those that may only
appear in character strings or comments), (ii) the lexical form of numerical
constants, and (ii7) the lexical form of identifiers, for each of the following
languages: (a) C (b) C++ (c) C# (d) Fortran (e) Java (f) Lisp (g) SQL.

! Exercise 3.3.2: Describe the languages denoted by the following regular ex-

pressions:
a) a(a/b)*a.
b) ((efa)b”)".
¢) (alb)*a(alb)(alb).
d) a*ba*ba*ba*,
Ie) (aa[b‘b)*((ab}ba)(aalbb)*(ab[ba)(aa}bb)*)*.
Exercise 3.3.3: In 4 string of length n, how many of the following are there?
a) Prefixes.
b) Suffixes.
¢) Proper prefixes.
!'d) Substrings.

!'e) Subsequences.

Thus, the SQL keyword SELECT can also be written select, Select, or SE1EcT,

Write regular definitions for the following languages:

All strings of lowercase letters that contain the five vowels in order.

b) Al strings of lowercase letters in which the letters are in ascending lexi-
cographic order.

@Comments, consisting of s string surrounded by /* and %/ , without an
intervening */, unless it is inside double-quotes ().

126 CHAPTER 3. LEXICAL ANALYSIS TApA 3 3 SPECIFICATION OF TOb
!1'd) All strings of digits with no repeated digits. Hint: Try this problem firss m M
with a few digits, such as {0, 1, 2} - the one nc
All strings of digits with at most one repeated digit. \e character
. . T ring s lit
!'f) All strings of a’s and b’s with an even number of a’s and an odd numbe; s SISOl
of b’s. any charac
. inning
g) The set of Chess moves, in the informal notation, such as p-k4 or kbpx qn. beim? n?
. . . . $ ena of a i
11 . c o . .
h) All strings of a's and b’s that do not contain the substring abb. . any one of
1) All strings of a's and b's that do not contain the subsequence abb. 4] any one ct
Exercise 3.3.6: Write character classes for the following sets of characters: r Zero or mc
o
a) The first ten letters (up to “j”) in either upper or lower case. T+ oneor
\ 7 Zero Or oI
b) The lowercase consonants. +imn) between 1
¢} The “digits” in a hexadecimal number (choose either upper or lower case _—. an r; follo
for the “digits” above 9). - an r, or ai
d) The characters that can appear at the end of a legitimate English sentence () same as r
(e.g., exclamation point). vy /s 7, when fc
The following exercises, up to and including Exercise 3.3.10, discuss the
extended regular-expression notation from Lex (the lexical-analyzer generator Figure 3.8:
that we shall discuss extensively in Section 3.5). The extended notation is listed 1BUre <.0:

in Fig. 3.8.

Exercise 3.3.7: Note that these regular expressions give all of the following
symbols {operator characters) a special meaning:

AP B B I O S

! Exercise 3.3.9: The regular exj
rences of the pattern r. For exam,
Show that for every regular expr

form, there is an equivalent regul
Their special meaning must be turned off if they are needed to represent them-

selves in a character string. We can do so by quoting the character within a
string of length one or more; e.g., the regular expression " matches the string
**. We can also get the literal meaning of an operator char
it by a backslash. Thus, the regular expression ** also
**. Write a regular expression that matches the string "\.

a

Exercise 3.3.10: The operator
the right end of a line. The opera
character classes, but the contex
tended. For example, ~[~aeiou]
contain a lowercase vowel.

acter by preceding
matches the string

Exercise 3.3.8: In Lex, a complemented character class represents any char-
acter except the ones listed in the character class. We denote a complemented
class by using * as the first character; this symbol (caret) is not itself part of
the class being complemented, unless it is listed within the class itself. Thus,
["A-Za-z] matches any character that is not an uppercase or lowercase letter,
and ["\"] represents any character but the caret (or newline, since newline
cannot be in any character class). Show that for every regular expression with

complemented character classes, there is an equivalent regular expression with-
out complemented character classes.

a) How do you tell which mea:

b) Can you always replace a1
by an equivalent expression

v

Exercise 3.3.11: The UNIX s'h«
in filename expressions to describ
expression *.o matches all file n.
names of the form sortl.c, whe

44 FINITE AUTOMATA 151
§ = 8p;
¢ = nextChar();
while (¢ != eof) {
s = move(s, c);
¢ = nextChar();
}
if (sisin F) return "yes";
else return "no';

Figure 3.27: Simulating a DFA

Figure 3.28: DFA accepting (a]b)*abb

3.6.5 Exercises for Section 3.6

" ! Exercise 3.6.1: F igure 3.19 in the exercises of Section 3.4 computes the failure

function for the KMP algorithm. Show how, given that failure function, we
can construct, from a keyword biby---b, an n + 1-state DFA that recognizes

*biby - - by, where the dot stands for “any character.” Moreover, this DFA can
be constructed in O(n) time.

Design finite automata (deterministic or nondeterministic)
for each of the languages of Exercise 3.3.5.

: Exercise 3.6.3: For the NFA
Does the NFA accept aabb?

T I o

of Fig. 3.29, indicate all the paths labeled aabb.

r

o CHAPTER 3. LEXICAL ANALYS]q

we clearly prefer the DFA. However, in commands like grep, where we run t},,
automaton on only one string, we generally prefer the NFA. It is not unti] 2]
approaches [r|? that we would even think about converting to a DFA. '

There is, however, a mixed strategy that is about as good as the bettey of
the NFA and the DFA strategy for each expression r and string 2. Start of
simulating the NFA, but remember the sets of NFA states (i.e., the DFA states)
and their transitions, as we compute them. Before processing the current set of
NFA states and the current input symbol, check to see whether we have already
computed this transition, and use the information if so.

3.7.6 Exercises for Section 3.7

Convert to DFA’s the NFA's of:

a) Fig. 3.26.

Fig. 3.29.

c) Fig. 3.30.

Exercise 3.7.2: use Algorithm 3.22 to simulate the NFA’s:
a) Fig. 3.29.
b) Fig. 3.30.

on input aabb.

(_Exercise 3.7 .3:) Convert the following regular expressions to deterininistic

finite automata, using algorithms 3.23 and 3.20:
a) (a/b)*.
b) (a*[b*)*.

(D (tap)"

d) (ab)*abb(a|b)*.

3.8 Design of a Lexical-Analyzer Generator

In this section we shall apply the techniques presented in Section 3.7 to see
how a lexical-analyzer generator such as Lex is architected. We discuss two
approaches, based on NFA’s and DFA’s; the latter is essentially the implemen-
tation of Lex.

- Figu
e The program t

£F S . au

 simulates an e b

& ‘?ugpterministic or nondeterministic

' ls()mi_)OIIOntS that are created from t
R

5. DESIGN OF A LEXICAL-AM
3.8

481 The Structure of tk

e 3.49 overviews the architect
o hat serves as the lex
tomaton; at this po

Input buffer

-

lexemeBc

Lex Lex

—— .
program compiler

Figure 3.49: A Lex program is tu-rnn
are used by a finite-automaton sim

These components are:
1. A transition table for the aut

2. Those functions that are pas:
Section 3.5.2).

3. The actions from the input P
to be invoked at the appropr

To construct the automaton, 3
pattern in the Lex program and cor
We need a single automaton that
patterns in the program, so we cor
a new start state with e-transmor'n
for pattern p;. This construction i

Example 3.26: We shall illustrat
simple, abstract example:

~

! Exercise 3.9.4: Construct the minimum-state DFA’s for the

186 CHAPTER 3, LEXICAL .4N-1L}'SIS

is valid, and the neygt state for state s op input q is neztl]. If check{l] # «, they,
we determine another state t = default]s] and repeat the process as if 4 Werp

the current state, More formally, the function nextState is defined as follog.

nt nextState(s, a) {
if { chr:ck[ba,se[s] +a] ==) return nezt[base[s} + aj;

/

else return nextState(default]s], a);

1

The intended use of the structure of Fig. 3.66 is to make the next-checl,
arrayvs short by taking advantage of the similaritie
state ¢, the default for state s, might be the state that savs “we are working op
an identifier.” [ike State 10 in Fig. 3.14. Perhaps state s is entered after Seein
the letters th, which are 4 prefix of kevword then as wel] ag potentially being
the prefix of some lexeme for an identifier. On input character €. We must go
from state s to 4 Special state that remembers we have geen the, but otherwise,
State s behaves as ¢ does, Thus, we set check[base[s] + e] to s (to confirm that
this entry is valid for $) and we set neztfbase(s] + e] to the state that remembers
the. Also, default]s] is set to ¢,

While we may not be able to choose base values so that no nezt-check entries
remain unused, experience has shown that the simple strategy of assigning base
values to states in turn, and assigning each base[s] value the lowest integer so
that the specia] entries for state s gre not previously occupied utilizes little
more space than the minimum possible,

S among states. For instance,

3.9.9 Exercises for Sectjon 3.9

Exercise 3.9.1. Extend the table of Fig. 3.58 to include the operators (a) ?
and (b) +,

Exercise 3.9.2. Use Algorithm 3.36 to convert the regular ex

pressions of Ex-
ercise 3.7.3 directly to deterministjc finite automata,

following regular
expressions:

a) (afb)*a(alb).
b) (ajb)*a(a/b)(a/b).
c) (aib;)*a(a]b)(a}b)(a}b).

1(] SUMMARY OF CHAPT
J.au.

T tern?
" Do vou sec a pat

gxercise 3.9.5: To make forn
o szf anv deterministic finite aut
- that an]

(alb¥”

% -here (alb) appears n — 1 tines
=5 s'kgbg(.rve the pattern in Exercise .
¥ “np‘uts does each state represent’
i

4 Tokens. The lexical analyz
output a sequence of tokens
the parser. Some tokens m
may also have an associate
the particular instance of tl

4+ Lezemes. Each time the le
it has an associated lexeme
token represents.

+ Buffering. Because it is off
order to see where the next
lexical analyzer to buffer it
ending each buffer’s content:
techniques that accelerate t]

4+ Patterns. Each token has :
characters can form the lex
of words, or strings of chara
language.

4+ Regular Ezpressions. These;
patterns. Regular expressi
union, concatenation, and t
ator.

4 Regular Definitions. Comple
terns that describe the toker
fined by a regular definition,
define one variable to stand
pression for one variable can
expression.

