
Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (1)

Principle of Compilers
Lecture V. Semantic Analysis Formalism:

Syntax Directed Translation

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

Room: 221

artale@inf.unibz.it

http://www.inf.unibz.it/ �artale/

2003/2004 – Second Semester



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (2)

Summary of Lecture V

� Syntax Directed Definitions

� Implementing Syntax Directed Translations

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

� Translation Schemes



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (3)

Semantic Analysis

� Semantic Analysis computes additional information once the syntactic

structure is known.

� The information to be computed is beyond the capabilities of standard

parsing techniques, therefore is not regarded as syntax.

� The information is also related to the meaning of the program.

� In typed languages as C, semantic analysis involves building the symbol

table and performing type checking.

� As for Lexical and Syntax analysis, also for Semantic Analysis we need both

a Representation Formalism and an Implementation Mechanism.

� As representation formalism this lecture illustrates what are called Syntax

Directed Translations (also known as Attribute Grammars).



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (4)

Syntax Directed Translation: Intro

� The Principle of Syntax Directed Translation states that the meaning of an

input sentence is related to its syntactic structure, i.e. to its Parse-Tree.

� By Syntax Directed Translations we indicate those formalisms for specify-

ing translations for programming language constructs guided by context-free

grammars.

– We associate Attributes to the grammar symbols representing the

language constructs.

– Values for attributes are computed by Semantic Rules associated with

grammar productions.

� Evaluation of Semantic Rules may:

– Generate Code;

– Insert information into the Symbol Table;

– Perform Semantic Check;

– Issue error messages; etc.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (5)

Syntax Directed Translation: Intro (Cont.)

� There are two notations for attaching semantic rules:

1. Syntax Directed Definitions. High-level specification hiding many

implementation details (also called Attribute Grammars).

2. Translation Schemes. More implementation oriented: Indicate the order

in which semantic rules are to be evaluated.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (6)

Syntax Directed Definitions

� Syntax Directed Definitions are a generalization of context-free grammars

in which:

1. Grammar symbols have an associated set of Attributes;

2. Productions are associated with Semantic Rules for computing the

values of attributes.

� Such formalism generates Annotated Parse-Trees where each node is of

type record with a field for each attribute (e.g.,

��
� � indicates the attribute �

of the grammar symbol

�

).



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (7)

Syntax Directed Definitions (Cont.)

� The value of an attribute of a grammar symbol at a given parse-tree node is

defined by a semantic rule associated with the production used at that node.

� We distinguish between two kinds of attributes:

1. Synthesized Attributes. They are computed from the values of the

attributes of the children nodes.

2. Inherited Attributes. They are computed from the values of the

attributes of both the siblings and the parent nodes.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (8)

Form of Syntax Directed Definitions

� Each production,

� � �, is associated with a set of semantic rules:

��� � � �
	�� 
 	�� 
 � � � 
 	�
�

, where

�

is a function and either

1.

�

is a synthesized attribute of

�

, and 	 � 
 	� 
 � � � 
 	� are attributes of the

grammar symbols of the production, or

2.

�

is an inherited attribute of a grammar symbol in �, and 	 � 
 	 � 
 � � � 
 	�

are attributes of grammar symbols in � or attributes of

�

.

� Terminal symbols are assumed to have synthesized attributes supplied by the

lexical analyzer.

� Procedure calls (e.g. addtype in the grammar for declarations) define values

of Dummy synthesized attributes of the non terminal on the left-hand side of

the production.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (9)

Syntax Directed Definitions: An Example

� Example. Let us consider the Grammar for arithmetic expressions. The

Syntax Directed Translation associate to each non terminal a synthesized

attribute called val.

PRODUCTION SEMANTIC RULE

� � �

n print

� �
� � � � �

� � �� � � �
� � � � � � �� � � � � � �
� � � �

� � � �
� � � � � � �
� � � �

� � �� �

� �
� � � � � � �� � � � �

�

�
� � � �

� � � �
� � � � � � �
� � � �

� � � � � �
� � � � � � �
� � � �

� � digit

�
� � � � � �digit.lexval



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (10)

S-Attributed Definitions

� An S-Attributed Definition is a Syntax Directed Definition that uses only

synthesized attributes.

� Evaluation Order. Semantic rules in a S-Attributed Definition can be

evaluated by a bottom-up, or PostOrder, traversal of the parse-tree.

� Example. The above arithmetic grammar is an example of an S-Attributed

Definition. The annotated parse-tree for the input 3*5+4n is:

�

�
� � � � � � �

n

�
� � � � � � � +

�
� � � � � �

�
� � � � � � � �
� � � � � �

�
� � � � � �

*

�
� � � � � � digit.lexval � �

�
� � � � � � digit.lexval � �

digit.lexval � �



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (11)

Inherited Attributes

� Inherited Attributes are useful for expressing the dependence of a construct

on the context in which it appears.

� It is always possible to rewrite a syntax directed definition to use only

synthesized attributes, but it is often more natural to use both synthesized

and inherited attributes.

� Evaluation Order. Inherited attributes can be evaluated by a PreOrder

traversal of the parse-tree, but

– Unlike synthesized attributes, the order in which the inherited attributes

of the children are computed is important!!! Indeed:

– Inherited attributes of the children can depend from both left and right

siblings!



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (12)

Inherited Attributes: An Example

� Example. Let us consider the syntax directed definition with both inherited

and synthesized attributes for the grammar for “type declarations”:

PRODUCTION SEMANTIC RULE

� � � � �
�

��� � � �
�

��� ��

� �int

�
�

�� �� � �integer

� �real

�
�

�� �� � �real

� � �� 
 id

�� �
��� � � �
�

���	 addtype(id.entry, L.in)

� � id addtype(id.entry, L.in)

� The non terminal

�

has a synthesized attribute, type, determined by the

keyword in the declaration.

� The production

� � � �

is associated with the semantic rule

�
�

��� � � �
�

�� ��

which set the inherited attribute

�
�

��� .

� The production
� � �� 
 id distinguishes the two occurrences of

�

.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (13)

Inherited Attributes: An Example (Cont.)

� Synthesized attributes can be evaluated by a PostOrder traversal.

� Inherited attributes do not depend from right children: They can be evaluated

by a classical PreOrder traversal.

� The annotated parse-tree for the input real id� , id� , id � is:

�

�
�

��� �� � � � � � �
�

���

real

�
�

��� , id �

�
�

��� , id�

id�

�

�
�

��� is then inherited top-down the tree by the other

�

-nodes.

� At each

�

-node the procedure addtype inserts into the symbol table the type

of the identifier.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (13)

Inherited Attributes: An Example (Cont.)

� Synthesized attributes can be evaluated by a PostOrder traversal.

� Inherited attributes do not depend from right children: They can be evaluated

by a classical PreOrder traversal.

� The annotated parse-tree for the input real id� , id� , id � is:

�

�
�

��� �� � � � � � �
�

��� � � � � �

real

�
�

��� , id �

�
�

��� , id�

id�

�

�
�

��� is then inherited top-down the tree by the other

�

-nodes.

� At each

�

-node the procedure addtype inserts into the symbol table the type

of the identifier.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (13)

Inherited Attributes: An Example (Cont.)

� Synthesized attributes can be evaluated by a PostOrder traversal.

� Inherited attributes do not depend from right children: They can be evaluated

by a classical PreOrder traversal.

� The annotated parse-tree for the input real id� , id� , id � is:

�

�
�

��� �� � � � � � �
�

��� � � � � �

real

�
�

��� � � � � � , id �

�
�

��� , id�

id�

�

�
�

��� is then inherited top-down the tree by the other

�

-nodes.

� At each

�

-node the procedure addtype inserts into the symbol table the type

of the identifier.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (13)

Inherited Attributes: An Example (Cont.)

� Synthesized attributes can be evaluated by a PostOrder traversal.

� Inherited attributes do not depend from right children: They can be evaluated

by a classical PreOrder traversal.

� The annotated parse-tree for the input real id� , id� , id � is:

�

�
�

��� �� � � � � � �
�

��� � � � � �

real

�
�

��� � � � � � , id �

�
�

��� � � � � � , id�

id�

�

�
�

��� is then inherited top-down the tree by the other

�

-nodes.

� At each

�

-node the procedure addtype inserts into the symbol table the type

of the identifier.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (14)

Summary

� Syntax Directed Definitions

� Implementing Syntax Directed Translations

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

� Translation Schemes



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (15)

Dependency Graphs

� Implementing a Syntax Directed Definition consists primarily in finding an

order for the evaluation of attributes

– Each attribute value must be available when a computation is performed.

� Dependency Graphs are the most general procedure to evaluate syntax

directed translations with both synthesized and inherited attributes.

� A Dependency Graph shows the interdependencies among the attributes of

the various nodes of a parse-tree.

– There is a node for each attribute;

– If attribute

�

depends on an attribute 	 there is a link from the node for 	

to the node for

�

(

� � 	 ).

� If an attribute

�

depends from another attribute 	 then we need to fire the

semantic rule for 	 first and then the semantic rule for

�

.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (16)

Dependency Graphs: An Example

� Example. Build the dependency graph for the parse-tree of real id� , id� , id � .



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (17)

Evaluation Order

� The evaluation order of semantic rules depends from a Topological Sort

derived from the dependency graph.

� Topological Sort. Is any ordering �� 
 �� 
 � � � 
 �� such that if ��� � ��� is a

link in the dependency graph then � � � � � .

� Any topological sort of a dependency graph gives a valid order to evaluate

the semantic rules.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (18)

Implementing Attribute Evaluation: General Remarks

� Attributes can be evaluated by building a dependency graph at compile-time

and then finding a topological sort.

� Disavantages

1. This method fails if the dependency graph has a cycle: We need a test for

non-circularity;

2. This method is time consuming due to the construction of the dependency

graph.

� Alternative Approach. Design the syntax directed definition in such a way

that attributes can be evaluated with a fixed order (method followed by many

compilers).



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (19)

Strongly Non-Circular Syntax Directed Definitions

� Strongly Non-Circular Syntax Directed Definitions. Formalisms for

which an attribute evaluation order can be fixed at compiler construction

time.

– They form a class that is less general than the class of non-circular

definitions.

– In the following we illustrate two kinds of strictly non-circular definitions:

S-Attributed and L-Attributed Definitions.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (20)

Summary

� Syntax Directed Definitions

� Implementing Syntax Directed Translations

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

� Translation Schemes



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (21)

Evaluation of S-Attributed Definitions

� Synthesized Attributes can be evaluated by a bottom-up parser as the input is

being analyzed avoiding the construction of a dependency graph.

� The parser keeps the values of the synthesized attributes in its stack.

� Whenever a reduction

� � � is made, the attribute for

�

is computed from

the attributes of � which appear on the stack.

� Thus, a translator for an S-Attributed Definition can be implemented by

extending the stack of an LR-Parser.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (22)

Extending a Parser Stack

� Extra fields are added to the stack to hold the values of synthesized attributes.

� In the simple case of just one attribute per grammar symbol the stack has two

fields: state and val

state val

� �
� �

� �
� �

� ��
� �

� � � � � �

� The current top of the stack is indicated by the pointer top.

� Synthesized attributes are computed just before each reduction:

– Before the reduction

� � � � �

is made, the attribute for

�

is computed:

�
� � � � � � � � � � ��� � � 
 � � � � � � � � � �

 � � � � ��� � � � � �

.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (23)

Extending a Parser Stack: An Example

� Example. Consider the S-attributed definitions for the arithmetic expres-

sions. To evaluate attributes the parser executes the following code

PRODUCTION CODE

� � �

n print

� � � � � ��� � � � � �

� � �� � � � � � �� � � � � � � � � � � ��� � � � � � � � � � � � � �

� � �

� � �� �

� � � � �� � � � � � � � � � � ��� � � � � � � � ��� � � � �

� � �

� � � � � � � � �� � � � � � � � � � � ��� � � � �

� � digit

� The variable � ��� � is set to the new top of the stack. After a reduction is done

top is set to ntop.

– When a reduction

� � � is done with

� � � � �, then � � � � � � � � � � � �

.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (24)

Extending a Parser Stack: An Example (Cont.)

� The following Figure shows the moves made by the parser on input 3*5+4n.

– Stack states are replaced by their corresponding grammar symbol;

– Instead of the token digit the actual value is shown.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (25)

Summary

� Syntax Directed Definitions

� Implementing Syntax Directed Translations

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

� Translation Schemes



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (26)

L-Attributed Definitions

� L-Attributed Definitions contain both synthesized and inherited attributes

but do not need to build a dependency graph to evaluate them.

� Definition. A syntax directed definition is L-Attributed if each inherited

attribute of

�� in a production

� � �� � � �

�� � � �

�
� , depends only on:

1. The attributes of the symbols to the left (this is what

�

in L-Attributed

stands for) of

�� , i.e.,

�� �� � � �

��
�

� , and

2. The inherited attributes of

�

.

� Note. An S-Attributed definition is also L-Attributed since the restrictions

only apply to inherited attributes.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (27)

Evaluating L-Attributed Definitions

� L-Attributed Definitions are a class of syntax directed definitions whose

attributes can always be evaluated by single traversal of the parse-tree.

� The following procedure evaluate L-Attributed Definitions by mixing

PostOrder (synthesized) and PreOrder (inherited) traversal.

Algorithm L-Eval(n: Node). Input: Parse-Tree node from an L-Attribute

Definition. Output: Attribute evaluation.

Begin

For each child � of � , from left-to-right Do Begin;

evaluate inherited attributes of �;

L-Eval(m)

End;

evaluate synthesized attributes of �

End.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (28)

Summary

� Syntax Directed Definitions

� Implementing Syntax Directed Translations

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

� Translation Schemes



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (29)

Translation Schemes

� Translation Schemes are more implementation oriented than syntax directed

definitions since they indicate the order in which semantic rules and attributes

are to be evaluated.

� Definition. A Translation Scheme is a context-free grammar in which

1. Attributes are associated with grammar symbols;

2. Semantic Actions are enclosed between braces

� �

and are inserted within

the right-hand side of productions.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (30)

Translation Schemes (Cont.)

� Translation Schemes can have both synthesized and inherited attributes.

� Semantic Actions are treated as terminal symbols: Annotated parse-trees

contain semantic actions as children of the node standing for the correspond-

ing production.

� Translation Schemes are useful to evaluate L-Attributed definitions (even if

they are a general mechanism).



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (31)

Translation Schemes: An Example

� Consider the Translation Scheme for the L-Attributed Definition for “type

declarations”:

� � � � �
�

��� � � �
�

�� �� � �

� � int

� �
�

��� �� � �integer

�

� � real

� �
�

��� �� � �real
�

� � � �� �
��� � � �
�

��� � �� 
 id

�

addtype(id.entry, L.in)

�

� � id

�

addtype(id.entry, L.in)

�



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (32)

Translation Schemes: An Example (Cont.)

� Example (Cont). The parse-tree with semantic actions for the input real id� ,

id� , id � is:

�

� � �
�

��� � � �
�

��� �� � �

real

�

T.type := real

� � �� .in := L.in

� �� , id �

�

addtype(id � .entry, L.in)

�

� �� �
��� � � �� �
��� � �� , id�

�

addtype(id� .entry,

�� �
��� )

�

id�

�

addtype(id� .entry,

�� �
��� )

�

� Traversing the Parse-Tree in depth-first order we can evaluate the attributes.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (33)

Design of Translation Schemes

� When designing a Translation Scheme we must be sure that an attribute value

is available when an action is executed.

� A particular case is when the semantic action involves only synthesized

attributes: The action can be put at the end of the production.

– Example. The following Production and Semantic Rule:

� � �� �

� �
� � � � � � �� � � � �

�

�
� � � �

yield the translation scheme:

� � �� �

� � �
� � � � � � �� � � � �

�

�
� � � � �



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (34)

Design of Translation Schemes (Cont.)

� If we have both synthesized and inherited attributes we must enforce the

following restrictions:

1. An inherited attribute for a symbol in the right-hand side of a production

must be computed in an action before the symbol;

2. An action must not refer to a synthesized attribute of a symbol to the right

of the action;

3. A synthesized attribute for the non terminal on the left-hand side can only

be computed when all the attributes it references have been computed:

The action is usually put at the end of the production.

� It is always possible to start with an L-Attributed Definition and build a

Translation Scheme that satisfies the above properties.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (35)

Compile-Time Evaluation of Translation Schemes

� Attributes in a Translation Scheme can be computed at compile time similarly

to the evaluation of S-Attributed Definitions.

� Main Idea. Starting from a Translation Scheme with embedded actions, we

introduce a transformation that makes all the actions occur at the right ends

of their productions.

– We introduce a new Marker (i.e. a non terminal, say

�

) with an empty

reduction for each embedded semantic rule;

– The semantic rule is attached at the end of the production

� �� .



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (36)

Compile-Time Evaluation of Translation Schemes (Cont.)

� Example. Consider the following translation scheme:

� � � � � �
�

� � � � �
� � � � �

� � � �� � �
�

� � � � �
� � � � �

� � 	 � �
� � � � � �
�

� � �

Then, we add new markers

�� 
 �� with:

� � � � �� �

� � � �� �� �

�� �� � �� � � � � � � � � � � � � � � � �

�� �� � �� � � � � � � � � � � � � � � � � � �

� � 	 � �
� � � � � � � � � � ��� � � � � � �

The inherited attribute of
�

is the synthesized attribute of either

�� or

�� :

The value of

�� is always in val[top -1] when

� � 	 is applied.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (37)

Compile-Time Evaluation of Translation Schemes (Cont.)

General rules to compute translations during bottom-up parsing assuming an

L-attributed grammar.

� For every production

� � �� � � �

�
� introduce � new markers

�� 
 � � � 
 �
�

and replace the production by

� � �� �� � � �

�
�

�
� .

� Thus, we know the position of every synthesized and inherited attribute of

�� and

�

:

1.

�� � � is stored in the val entry in the parser stack associated with

�� ;

2.

�� �
�

is stored in the val entry in the parser stack associated with

�� ;

3.

�
�

�

is stored in the val entry in the parser stack immediately before the

position storing

�� .

� Remark 1. An LL(1) Grammar with marker is also an LR(1) Grammar.

� Remark 2. An LR(1) Grammar with marker can contain conflicts!!!



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (38)

Compile-Time Evaluation of Translation Schemes (Cont.)

Example. Computing the inherited attribute

�� �
�

after reducing with
�� � � .

top �

(top-2j) �

(top-2j+2) �

�� �� �
�

��
�

� ��
�

� � �

��
�

� ��
�

� �
�

� � � � � �

�� �� � �

�� �� �
�

��� �
�

�

�

�
�

�

is in � � � � ��� � � �� � � �

;

�

�� �
�

is in � � � � ��� � � � � � � �

;

�

�� � � is in � � � � ��� � � � � � � �

;

�

�� �
�

is in � � � � ��� � � � � � � �

;
� and so on.



Free University of Bolzano–Principles of Compilers. Lecture V, 2003/2004 – A.Artale (39)

Summary of Lecture V

� Syntax Directed Definitions

� Implementing Syntax Directed Translations

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

� Translation Schemes


