
gff: A Tool for Computing FIRST and FOLLOW Sets

Saumya Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721.

1 Description
gff is a simple tool that takes as input a contex free grammar, and produces as output the FIRST and FOLLOW sets
for the nonterminals of the grammar. It’s a pretty bare-bones no frills tool, with only rudimentary error checking and
handling.

As a simple example, consider the CFG

S −→ (S) | ε

To compute the FIRST and FOLLOW sets for this grammar, we first create a file—say, ex.in—specifying the
grammar:

ex.in:
%%

S : ’(’ S ’)’
| /* epsilon */

;

The first line of this file, ‘%%’, is a delimiter that separates some optional declarations (whicch come before the %%
delimiter—in this case, there are no declarations) from the grammar productions. The syntax of the input files is
discussed below.1

gff is invoked on this file as follows (with ‘%’ being the shell prompt):

% gff ex.in

and produces the following output:

FIRST sets:

S: ’(’ <epsilon>

FOLLOW sets:

S: <EOF> ’)’

1People acquainted with the tools yacc or bison will see strong similarities between the syntax of gff input files and those for yacc/bison.
This is not an accident.

1

2 gff Usage
gff takes a single argument, the name of a file specifying a context free grammar. It produces as output, on stdout,
the FIRST and FOLLOW sets of the nonterminals of that grammar.

3 Input Syntax

3.1 File Structure

An input file consists of two parts: a declarations part and a productions part. The two parts are separated by the
delimiter ‘%%’ on a line by itself. The file therefore has the following structure:







declarations

%%






grammar rules

Both the declarations and the grammar rules are optional, but the delimiter between them si required. Thus, the shortest
legal gff input would be the file consisting simply of the ‘%%’ delimiter.

3.2 Comments

Comments are as in C: a character sequence (possibly spanning multiple lines) starting with ‘/*’ and terminated by
‘*/’, with no occurrences of ‘*/’ in between.

Comments can appear anywhere in the input file except for the line containing the ‘%%’ delimiter.

3.3 Identifiers

Identifiers are used to name nonterminals and, possibly, terminals. An identifier is as in C, and consists of a letter
followed by zero or more letters, digits, and underscores.

Examples: ID, IntegerConst, expression, stmt list

3.4 Declarations

The optional declarations section specifies identifiers that are token names, as well as the start symbol of the grammar.

3.4.1 Tokens

Tokens are declared using the ‘%token’ keyword. Tokens that are given names, e.g., “IDENT” (identifier) or “INT-
CONST” (integer constant), must be declared as tokens; “character constant” tokens (a single character preceded and
followed by a single quote) e.g., ’+’, ’(’, need not be explicitly declared.

The declarations section can contain zero or more token declarations. Each such declaration is of the form

%token id list

where id list is a list of token names separated by whitespace. Each token name is an identifier. As an example, suppose
that the identifiers we want to declare are: ID, INTCONST, STRINGCONST, and CHARCONST. The following are
all acceptable ways to do this:

1. A single ‘%token’ declaration with a list of identifiers:

2

%token ID INTCONST STRINGCONST CHARCONST

2. Multiple ‘%token’ declarations, each with a list of identifiers:

%token ID INTCONST
%token STRINGCONST CHARCONST

3. Multiple ‘%token’ declarations, each with a single identifier:

%token ID

%token INTCONST
%token STRINGCONST

%token CHARCONST

3.4.2 The Start Symbol

The start symbol of the grammar (which affects FOLLOW sets) can be specified explicitly, in the declarations portion
of the input file, using the ‘%start’ keyword:

%start id

where id is an identifier that is the name of a nonterminal.

Start symbol specifications are optional: if no start symbol is specified, the first nonterminal listed in the grammar
rules section of the input file will be taken to be the start symbol. A grammar should not specify more than one start
symbol: if multiple ‘%start’ declarations are encountered in an input file, the first one is used.

As an example, suppose we have a grammar with nonterminals X and Y , where Y is the start symbol. The following
would explicitly declare Y to be the start symbol:

%token ...

%start Y
%%

. . . grammar rules for X . . .

. . . grammar rules for Y . . .

The start symbol could also be declared implicitly, as follows, where Y is taken as the start symbol because it is the
first nonterminal whose rules are listed in the grammar rules portion of the input:

%token ...

%%

. . . grammar rules for Y . . .

. . . grammar rules for X . . .

3.5 Grammar Rules

The grammar rules section of the input file consists of a list of nonterminals and their productions;

3

. . .
%%
nonterminal1’s productions
. . .
nonterminaln’s productions

3.5.1 Nonterminals

Nonterminal names are identifiers (see Section 3.3). Any identifier that has not been declared to be a token (see Section
3.4.1) is taken to be a nonterminal.

3.5.2 Productions

The productions for a nonterminal are specified as follows. Given a nonterminal X with productions

X → α1

X → α2

· · ·

X → αn

the productions would be written as: the nonterminal X ; then a colon delimiter; then a list of the right hand sides of its
productions separated by ‘|’; and finally ending with a semicolon:

X : α1 | α2 | · · · | αn ;

There is exactly one such specification for each nonterminal in the grammar. Thus, for a grammar with nonterminals
X1, . . . ,Xk, the grammar rules X1, . . . ,Xk, where nonterminal Xi has productions

Xi → αi1 | · · ·αini

the productions would be specified as

...
%%

X1 : α11 | · · · | α1n1 ;

...
Xk : αk1 | · · · | αknk ;

If one of the right hand sides is ε, it is written simply as expected, e.g.: the productions

S → (S) | ε

would be written as:

...
%%

S : ’(’ S ’)’
| /* epsilon */

;

4

4 An Example
Consider the context free grammar G = (V,T,P,E), where:

– V = {E,E1,T,T1,F} is the set of nonterminals;

– T = {id, intcon,+,−,∗,/,(,)} is the set of terminals;

– the start symbol is E; and

– the set of productions P consists of the following:

E → T E1

E1 → + T E1 | − T E1 | ε
T → F T1

T1 → ∗ F T1 | / F T1 | ε
F → id | intcon | (E)

A gff input file specifying this grammar would be:

%token ID INTCON

%start E
%%

E : T E1
;

E1 : ’+’ T E1
| ’-’ T E1

| /* epsilon */
;

T : F T1
;

T1 : ’*’ F T1

| ’/’ F T1

| /* epsilon */
;

F : ID

| INTCON
| ’(’ E ’)’

;

Some style comments
It simplifies life and improves readability (especially if you’re going to be making changes to the grammar) to have
each right-hand-side of a production listed on a separate line, as in the example above. Also, indicating an epsilon-
production via an explicit comment, as shown above, helps readibility.

5

