Chapter 4: LR Parsing
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Some definitions

Recall

For a grammar G, with start symbol S, any string a such that S=*a is
called a sentential form

e Ifa e\, then a is called a sentence in L(G)
e Otherwise it is just a sentential form (not a sentence in L(G))

A left-sentential form is a sentential form that occurs in the leftmost deriva-
tion of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.
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Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree by
starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form from the language
against the tree’s upper frontier.

At each match, it applies a reduction to build on the frontier:

e each reduction matches an upper frontier of the partially built tree to
the RHS of some production

e each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.
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Example

Consider the grammar

1S — aABe
2|A — Abc
3 | b
4B — d

and the input string abbcde

Prod’'n. | Sentential Form
3 a b bcde

2 a Abc (de
4 aAdle

1 aABe

— S

The trick appears to be scanning the input and finding valid sentential
forms.
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Handles

What are we trying to find?

A substring a of the tree’s upper frontier that

matches some production A— a where reducing a to Ais one step in
the reverse of a rightmost derivation

We call such a string a handle.

Formally:

a handle of a right-sentential form y is a production A — 3 and a po-
sition in y where 3 may be found and replaced by A to produce the
previous right-sentential form in a rightmost derivation of y

l.e., if S={,, dAw =y apw then A — 3 in the position following a is a
handle of af3w

Because y is a right-sentential form, the substring to the right of a handle
contains only terminal symbols.
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Handles

/N

B w

The handle A — [3 in the parse tree for afw
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Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique han-
dle.

Proof: (by definition)

1. Gis unambiguous = rightmost derivation is unique

2. = a unique production A — (3 applied to take y;_1 to y;

3. = a unique position k at which A — [3 is applied

4. = a unique handle A— 3
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Example

The left-recursive expression grammar (original form)

Prod'n. | Sentential Form

1| (goal) = (expr) — | {goal)
2 | (expr) = (expr)+ (term) 1 | (expr)
3 (expr) — (term) 3 (expr) — (term)
4 (term) 5 (expr) — (term) x (factor)
5| (term) = (term) x (factor) 9 (expr) — (term) * id
6 (term) /(factor) 7 (expr) — (factor) x id
/ (factor) 8 (expr) — num * id
8 | (factor) = num 4 (term) — num * id
9 id 7 (factor) — num * id

9 id — num * id
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Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.

To construct a rightmost derivation

S=Yo=YV1=YV2= = ¥W-1=¥=W

we set i to n and apply the following simple algorithm

for i = N downto 1
1. find the handle Aj — [ in Vj

2. replace [j with Aj to generate Yj_1

This takes 2n steps, where n is the length of the derivation
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Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a
shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer
1. initialize stack with $
2. Repeat until the top of the stack is the goal symbol and the input token
is $
a) find the handle

If we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle
If we have a handle A — [3 on the stack, reduce

1) pop | B | symbols off the stack

i) push A onto the stack
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Example: backtox — 2 x y

OO0 ~NO Ol P WDN -

(goal) ::
(expr)

(expr)
(expr) + (term)
(expr) — (term)
(term)
(term) ::= (term) x (factor)
(term) /(factor)
(factor)

(factor) ::= num

| id

Stack Input Action

$ id — num * id|shift

$id — num * id|reduce 9
$(factor) — num * id|reduce 7
$(term) — num * id|reduce 4
$(expr) — num * id|shift
$(expr) — num * id|shift
$(expr) — num * id|reduce 8
$(expr) — (factor) x id|reduce 7
$(expr) — (term) * id/shift
$(expr) — (term) x* id|shift
$(expr) — (term) * id reduce 9
$(expr) — (term) * (factor) reduce 5
$(expr) — (term) reduce 3
$(expr) reduce 1
$(goal) accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept
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Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:
1. shift — next input symbol is shifted onto the top of the stack

2. reduce — right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3. accept — terminate parsing and signal success
4. error — call an error recovery routine

The key problem: to recognize handles (not covered in this course).
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LR(k) grammars

Informally, we say that a grammar G is LR(K) if, given a rightmost derivation

S=Yo=V1=YV2="=>¥h=W,

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and
2. determine the production by which to reduce

by scanning y; from left to right, going at most k symbols beyond the right
end of the handle of y;.
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LR(k) grammars

Formally, a grammar G is LR(k) iff.:

1. S={y 0AW =m apw, and
2. S=/y YBX=rm oy, and
3. FIRSTK(W) = FIRSTK(Y)

= 0Ay = yBX

l.e., Assume sentential forms apfw and afy, with common prefix a3 and
common k-symbol lookahead FIRST(y) = FIRSTK(w), such that apw re-
duces to aAw and afy reduces to yBx.

But, the common prefix means af¥y also reduces to aAy, for the same re-
sult.

Thus aAy = yBx.
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Why study LR grammars?

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.

e everyone’s favorite parser

e virtually all context-free programming language constructs can be ex-
pressed in an LR(1) form

e LR grammars are the most general grammars parsable by a determin-
Istic, bottom-up parser

e efficient parsers can be implemented for LR(1) grammars

e LR parsers detect an error as soon as possible in a left-to-right scan
of the input

e LR grammars describe a proper superset of the languages recognized
by predictive (i.e., LL) parsers

LL(K): recognize use of a production A — [3 seeing first k symbols of 3

LR(k): recognize occurrence of (3 (the handle) having seen all of what
Is derived from (3 plus k symbols of lookahead
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Left versus right recursion

Right Recursion:

e needed for termination in predictive parsers
e requires more stack space

e right associative operators
Left Recursion:

e Works fine in bottom-up parsers
e limits required stack space

e left associative operators
Rule of thumb:

e right recursion for top-down parsers

e left recursion for bottom-up parsers
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Parsing review

Recursive descent

A hand coded recursive descent parser directly encodes a grammar
(typically an LL(1) grammar) into a series of mutually recursive proce-
dures. It has most of the linguistic limitations of LL(1).

LL(K)

An LL(k) parser must be able to recognize the use of a production after
seeing only the first k symbols of its right hand side.

LR(K)

An LR(K) parser must be able to recognize the occurrence of the right
hand side of a production after having seen all that is derived from that
right hand side with k symbols of lookahead.

The dilemmas:
e LL dilemma: pick A—-borA—c ?
e LR dilemma: pick A—>borB—b ?
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