Chapter 4: LR Parsing

110

Some definitions

Recall

For a grammar G, with start symbol S, any string a such that S=*a is
called a sentential form

e Ifa e\, then a is called a sentence in L(G)
e Otherwise it is just a sentential form (not a sentence in L(G))

A left-sentential form is a sentential form that occurs in the leftmost deriva-
tion of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

Copyright (©2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

111

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree by
starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form from the language
against the tree’s upper frontier.

At each match, it applies a reduction to build on the frontier:

e each reduction matches an upper frontier of the partially built tree to
the RHS of some production

e each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.
112

Example

Consider the grammar

1S — aABe
2|A — Abc
3 | b
4B — d

and the input string abbcde

Prod’'n. | Sentential Form
3 a b bcde

2 a Abc (de
4 aAdle

1 aABe

— S

The trick appears to be scanning the input and finding valid sentential
forms.

113

Handles

What are we trying to find?

A substring a of the tree’s upper frontier that

matches some production A— a where reducing a to Ais one step in
the reverse of a rightmost derivation

We call such a string a handle.

Formally:

a handle of a right-sentential form y is a production A — 3 and a po-
sition in y where 3 may be found and replaced by A to produce the
previous right-sentential form in a rightmost derivation of y

l.e., if S={,, dAw =y apw then A — 3 in the position following a is a
handle of af3w

Because y is a right-sentential form, the substring to the right of a handle
contains only terminal symbols.

114

Handles

/N

B w

The handle A — [3 in the parse tree for afw

115

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique han-
dle.

Proof: (by definition)

1. Gis unambiguous = rightmost derivation is unique

2. = a unique production A — (3 applied to take y;_1 to y;

3. = a unique position k at which A — [3 is applied

4. = a unique handle A— 3

116

Example

The left-recursive expression grammar (original form)

Prod'n. | Sentential Form

1| (goal) = (expr) — | {goal)
2 | (expr) = (expr)+ (term) 1 | (expr)
3 (expr) — (term) 3 (expr) — (term)
4 (term) 5 (expr) — (term) x (factor)
5| (term) = (term) x (factor) 9 (expr) — (term) * id
6 (term) /(factor) 7 (expr) — (factor) x id
/ (factor) 8 (expr) — num * id
8 | (factor) = num 4 (term) — num * id
9 id 7 (factor) — num * id

9 id — num * id

117

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.

To construct a rightmost derivation

S=Yo=YV1=YV2= = ¥W-1=¥=W

we set i to n and apply the following simple algorithm

for i = N downto 1
1. find the handle Aj — [in Vj

2. replace [j with Aj to generate Yj_1

This takes 2n steps, where n is the length of the derivation

118

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a
shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer
1. initialize stack with $
2. Repeat until the top of the stack is the goal symbol and the input token
is $
a) find the handle

If we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle
If we have a handle A — [3 on the stack, reduce

1) pop | B | symbols off the stack

i) push A onto the stack

119

Example: backtox — 2 x y

OO0 ~NO Ol P WDN -

(goal) ::
(expr)

(expr)
(expr) + (term)
(expr) — (term)
(term)
(term) ::= (term) x (factor)
(term) /(factor)
(factor)

(factor) ::= num

| id

Stack Input Action

$ id — num * id|shift

$id — num * id|reduce 9
$(factor) — num * id|reduce 7
$(term) — num * id|reduce 4
$(expr) — num * id|shift
$(expr) — num * id|shift
$(expr) — num * id|reduce 8
$(expr) — (factor) x id|reduce 7
$(expr) — (term) * id/shift
$(expr) — (term) x* id|shift
$(expr) — (term) * id reduce 9
$(expr) — (term) * (factor) reduce 5
$(expr) — (term) reduce 3
$(expr) reduce 1
$(goal) accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept

120

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:
1. shift — next input symbol is shifted onto the top of the stack

2. reduce — right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3. accept — terminate parsing and signal success
4. error — call an error recovery routine

The key problem: to recognize handles (not covered in this course).

121

LR(k) grammars

Informally, we say that a grammar G is LR(K) if, given a rightmost derivation

S=Yo=V1=YV2="=>¥h=W,

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and
2. determine the production by which to reduce

by scanning y; from left to right, going at most k symbols beyond the right
end of the handle of y;.

122

LR(k) grammars

Formally, a grammar G is LR(k) iff.:

1. S={y 0AW =m apw, and
2. S=/y YBX=rm oy, and
3. FIRSTK(W) = FIRSTK(Y)

= 0Ay = yBX

l.e., Assume sentential forms apfw and afy, with common prefix a3 and
common k-symbol lookahead FIRST(y) = FIRSTK(w), such that apw re-
duces to aAw and afy reduces to yBx.

But, the common prefix means af¥y also reduces to aAy, for the same re-
sult.

Thus aAy = yBx.

123

Why study LR grammars?

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.

e everyone’s favorite parser

e virtually all context-free programming language constructs can be ex-
pressed in an LR(1) form

e LR grammars are the most general grammars parsable by a determin-
Istic, bottom-up parser

e efficient parsers can be implemented for LR(1) grammars

e LR parsers detect an error as soon as possible in a left-to-right scan
of the input

e LR grammars describe a proper superset of the languages recognized
by predictive (i.e., LL) parsers

LL(K): recognize use of a production A — [3 seeing first k symbols of 3

LR(k): recognize occurrence of (3 (the handle) having seen all of what
Is derived from (3 plus k symbols of lookahead

124

Left versus right recursion

Right Recursion:

e needed for termination in predictive parsers
e requires more stack space

e right associative operators
Left Recursion:

e Works fine in bottom-up parsers
e limits required stack space

e left associative operators
Rule of thumb:

e right recursion for top-down parsers

e left recursion for bottom-up parsers

125

Parsing review

Recursive descent

A hand coded recursive descent parser directly encodes a grammar
(typically an LL(1) grammar) into a series of mutually recursive proce-
dures. It has most of the linguistic limitations of LL(1).

LL(K)

An LL(k) parser must be able to recognize the use of a production after
seeing only the first k symbols of its right hand side.

LR(K)

An LR(K) parser must be able to recognize the occurrence of the right
hand side of a production after having seen all that is derived from that
right hand side with k symbols of lookahead.

The dilemmas:
e LL dilemma: pick A—-borA—c ?
e LR dilemma: pick A—>borB—b ?

126

