
Chapter 3: LL Parsing

58

The role of the parser

code
source tokens

errors

scanner parser IR

Parser

� performs context-free syntax analysis

� guides context-sensitive analysis

� constructs an intermediate representation

� produces meaningful error messages

� attempts error correction

For the next few weeks, we will look at parser construction

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

59

Syntax analysis

Context-free syntax is specified with a context-free grammar.

Formally, a CFG G is a 4-tuple

�

Vt � Vn � S � P

�

, where:

Vt is the set of terminal symbols in the grammar.
For our purposes, Vt is the set of tokens returned by the scanner.

Vn, the nonterminals, is a set of syntactic variables that denote sets of
(sub)strings occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal

�

S � Vn
�

denoting the entire set of strings
in L

�

G

�

.
This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and non-terminals
can be combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.

The set V � Vt

	

Vn is called the vocabulary of G

60

Notation and terminology

� a � b � c �� � � � Vt

� A � B � C �� � � � Vn

� U � V � W �� � � � V

� α � β � γ �� � � � V

�

� u � v � w �� � � � V

�

t

If A � γ then αAβ � αγβ is a single-step derivation using A � γ

Similarly, � �

and � �

denote derivations of

�

0 and

�

1 steps

If S � �

β then β is said to be a sentential form of G

L

�

G

� � �

w � V

�

t

�

S � �

w
�

, w � L

�

G

�

is called a sentence of G

Note, L

�

G

� � �

β � V
� �

S � �

β

� �

V

�

t

61

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).

Example:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� �

op

� �

expr

�

3

� � � �

4

� �

5

�

op

�

:: � �

6

� �

7

�

�

8

� �
This describes simple expressions over numbers and identifiers.

In a BNF for a grammar, we represent

1. non-terminals with angle brackets or capital letters
2. terminals with � � �
 �� � �
� font or underline
3. productions as in the example

62

Scanning vs. parsing

Where do we draw the line?

term :: �

0 � 9

� � �

�

0

� �� � � � �� � � � �

op :: � � � � �
�

� �

expr :: � �

term op

� �

term

Regular expressions are used to classify:

� identifiers, numbers, keywords

� REs are more concise and simpler for tokens than a grammar

� more efficient scanners can be built from REs (DFAs) than grammars

Context-free grammars are used to count:

� brackets:

� �

,

�
� � � . . .
�

,
� �

. . . � �
� . . .
 � �

� imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200
productions. Factoring out lexical analysis as a separate phase makes
compiler more manageable.

63

Derivations

We can view the productions of a CFG as rewriting rules.

Using our example CFG:

�

goal

� � �

expr

�

� �

expr

� �

op

� �

expr

�

� �

expr

� �

op

� �

expr

� �

op

� �

expr
�

� �

id, � � �

op

� �

expr

� �

op

� �

expr
�

� �

id, � � � �

expr

� �

op
� �

expr

�

� �

id, � � � �

num,
� � �

op
� �

expr

�

� �

id, � � � �

num,
� �

�

�

expr

�

� �

id, � � � �

num,
� �

�

�

id, � �

We have derived the sentence � � � � �.
We denote this

�

goal

� � � �
 � � � � � �

.

Such a sequence of rewrites is a derivation or a parse.

The process of discovering a derivation is called parsing.

64

Derivations

At each step, we chose a non-terminal to replace.

This choice can lead to different derivations.

Two are of particular interest:

leftmost derivation
the leftmost non-terminal is replaced at each step

rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

65

Rightmost derivation

For the string � � � � �:

�

goal

� � �

expr

�

� �

expr

� �

op

� �

expr

�

� �

expr

� �

op

� �

id, � �

� �

expr

�

�

�

id, � �

� �

expr

� �

op

� �

expr

�

�

�

id, � �

� �

expr

� �

op

� �

num,

� �

�

�

id, � �

� �

expr

� � �

num,

� �

�

�
id, � �

� �

id, � � � �

num,
� �

�

�

id, � �

Again,

�

goal

� � � �
 � � � � � �

.

66

Precedence

goal

expr

expr op expr

expr op expr * <id,y>

<num,2>+<id,x>

Treewalk evaluation computes (� � �

) � �

— the “wrong” answer!

Should be � �

(
� � �)

67

Precedence

These two derivations point out a problem with the grammar.

It has no notion of precedence, or implied order of evaluation.

To add precedence takes additional machinery:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� � �

term

�
3

� �

expr

� � �

term
�

4

� �

term

�

5

�

term

�

:: � �

term

�

�

�
factor

�

6

� �

term
� � �

factor

�

7

� �

factor
�

8

�

factor

�

:: � � � �

9
� �

This grammar enforces a precedence on the derivation:

� terms must be derived from expressions

� forces the “correct” tree

68

Precedence

Now, for the string � � � � �:

�

goal

� � �

expr

�

� �

expr

� � �

term

�

� �

expr

� � �

term

�

�

�

factor

�

� �

expr

� � �

term

�

�

�

id, � �

� �

expr

� � �

factor

�

�

�

id, � �

� �

expr

� � �

num,

� �

�

�

id, � �

� �

term

� � �

num,

� �

�

�
id, � �

� �

factor

� � �

num,
� �

�

�

id, � �

� �

id, � � � �

num,
� �

�

�

id, � �

Again,

�

goal

� � � �
 � � � � � �

, but this time, we build the desired tree.

69

Precedence

expr

expr

+

term

factor

<id,x>

goal

term

*term

<num,2>

factor

factor

<id,y>

Treewalk evaluation computes � �

(

� � �)

70

Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous

Example:

�

stmt

�

::=

� � �

expr

� � �
� �

stmt

�

� � � �

expr

� � �
� �

stmt

�
 � �
 �

stmt

�

� � � �
� � � � � �

Consider deriving the sentential form:

� �

E1

� �
� � �

E2

� �
� S1

 � �
 S2

It has two derivations.

This ambiguity is purely grammatical.

It is a context-free ambiguity.

71

Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:

�

stmt

�

::=

�

matched

�

� �

unmatched

�

�

matched

�

::=

� � �

expr

� � �
� �

matched

�
 � �
 �

matched
�

� � � �
� � � � � �

�

unmatched

�

::=

� � �

expr

� � �
� �

stmt

�

� � � �

expr

� � �
� �

matched

�
 � �
 �

unmatched

�

This generates the same language as the ambiguous grammar, but applies
the common sense rule:

match each
 � �
 with the closest unmatched � �
�

This is most likely the language designer’s intent.

72

Ambiguity

Ambiguity is often due to confusion in the context-free specification.

Context-sensitive confusions can arise from overloading.

Example:

� � � � � � �

In many Algol-like languages,

�

could be a function or subscripted variable.

Disambiguating this statement requires context:

� need values of declarations

� not context-free

� really an issue of type

Rather than complicate parsing, we will handle this separately.

73

Parsing: the big picture

parser

generator

code

parser

tokens

IR

grammar

Our goal is a flexible parser generator system

74

Top-down versus bottom-up

Top-down parsers

� start at the root of derivation tree and fill in

� picks a production and tries to match the input

� may require backtracking

� some grammars are backtrack-free (predictive)

Bottom-up parsers

� start at the leaves and fill in

� start in a state valid for legal first tokens

� as input is consumed, change state to encode possibilities
(recognize valid prefixes)

� use a stack to store both state and sentential forms

75

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the
start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse
tree matches the input string

1. At a node labelled A, select a production A � α and construct the
appropriate child for each symbol of α

2. When a terminal is added to the fringe that doesn’t match the input
string, backtrack

3. Find the next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1

� should be guided by input string

76

Simple expression grammar

Recall our grammar for simple expressions:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� � �

term

�

3

� �

expr

� � �

term

�

4

� �

term

�

5

�

term

�

:: � �

term

�

�

�

factor
�

6

� �

term

� � �

factor
�

7

� �

factor

�

8

�

factor

�

:: � � � �
9

� �

Consider the input string � � � � �

77

Example
Prod’n Sentential form Input

–

�

goal

� �� �

� � �

1

�

expr

� �� �

� � �

2

�

expr

� � �

term

� �� �

� � �

4

�

term

� � �

term

� �� �

� � �

7

�

factor

� � �

term

� �� �

� � �
9

 � � �

term

� �� �

� � �
–

 � � �

term

� � �

�

� � �
–

�

expr

� �� �

� � �

3

�

expr

�

�
�

term

� �� �

� � �

4

�

term

�

�
�

term

� �� �

� � �

7

�

factor

�

�
�

term

� �� �

� � �

9

 �
�

�

term

� �� �

� � �

–

 �
�

�

term

� � �

�

� � �

–

 �
�

�

term

� � �

� � � �

7

 �
�

�

factor

� � �

� � � �

8

 �
� � � 	 � �

� � � �

–

 �
� � � 	 � �

� � � �

–

 �
�

�

term

� � �

� � � �

5

 �
�

�

term

� � �
factor

� � �

� � � �

7

 �
�

�

factor
� � �

factor

� � �

� � � �

8

 �
� � � 	 � �

factor

� � �

� � � �

–

 �
� � � 	 � �

factor

� � �

� � � �

–

 �
� � � 	 � �

factor

� � �

� � ��

9
 �

� � � 	 � � � �

� � ��

–
 �

� � � 	 � � � �

� � � �

78

Example

Another possible parse for � � � � �

Prod’n Sentential form Input
–

�

goal

� � � � � � �
1

�

expr

� � � � � � �

2

�

expr

� � �

term

� � � � � � �

2

�

expr

� � �

term

� � �

term

� � � � � � �

2

�

expr

� � �

term

� �
� � �

� � � � � �

2

�

expr

� � �

term

� �
� � �

� � � � � �

2 � � �

� � � � � �

If the parser makes the wrong choices, expansion doesn’t terminate.
This isn’t a good property for a parser to have.

(Parsers should terminate!)

79

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar

Formally, a grammar is left-recursive if

�

A � Vn such that A � �

Aα for some string α

Our simple expression grammar is left-recursive

80

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

Consider the grammar fragment:

�

foo

�

:: � �

foo

�

α�

β

where α and β do not start with

�

foo

�

We can rewrite this as:

�

foo

�

:: � β
�

bar

�

�

bar

�

:: � α
�

bar

�

�
ε

where

�

bar

�

is a new non-terminal

This fragment contains no left-recursion

81

Example
Our expression grammar contains two cases of left-recursion

�

expr

�

:: � �

expr

� � �

term

�

� �

expr

� � �

term

�

� �

term

�

�

term

�

:: � �

term

�

�

�

factor

�

� �

term

� � �

factor

�

� �

factor

�

Applying the transformation gives

�

expr

�

:: � �

term

� �

expr
� �

�

expr

� �

:: � � �

term
� �

expr

� �

�

ε� � �

term

� �

expr

� �

�

term

�

:: � �
factor

� �

term

� �

�

term

� �

:: � �
�

factor

� �

term

� �

�
ε� � �

factor

� �

term

� �

With this grammar, a top-down parser will

� terminate

� backtrack on some inputs

82

Example

This cleaner grammar defines the same language

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� � �

expr

�

3

� �

term

� � �

expr

�

4

� �

term

�

5

�

term

�

:: � �

factor

�

�

�

term

�

6

� �

factor

� � �

term
�

7

� �

factor

�

8

�

factor

�

:: � � � �

9

� �

It is

� right-recursive

� free of ε productions

Unfortunately, it generates different associativity
Same syntax, different meaning

83

Example

Our long-suffering expression grammar:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� �

expr

� �

3

�

expr

� �

:: � � �

term

� �

expr

� �

4

� � �

term

� �

expr

� �

5

�

ε
6

�

term

�

:: � �

factor

� �

term
� �

7

�

term

� �

:: � �
�

factor
� �

term

� �

8

� � �

factor
� �

term

� �

9

�

ε
10

�

factor

�

:: � � � �

11
� �

Recall, we factored out left-recursion
84

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they select the
wrong production

Do we need arbitrary lookahead to parse CFGs?

� in general, yes

� use the Earley or Cocke-Younger, Kasami algorithms
Aho, Hopcroft, and Ullman, Problem 2.34

Parsing, Translation and Compiling, Chapter 4

Fortunately

� large subclasses of CFGs can be parsed with limited lookahead

� most programming language constructs can be expressed in a gram-
mar that falls in these subclasses

Among the interesting subclasses are:

LL(1): left to right scan, left-most derivation, 1-token lookahead; and
LR(1): left to right scan, right-most derivation, 1-token lookahead

85

Predictive parsing

Basic idea:

For any two productions A � α

�

β, we would like a distinct way of
choosing the correct production to expand.

For some RHS α � G, define FIRST

�

α

�

as the set of tokens that appear
first in some string derived from α
That is, for some w � V

�

t , w �

FIRST

�

α

�

iff. α � �

wγ.

Key property:
Whenever two productions A � α and A � β both appear in the grammar,
we would like

FIRST

�

α
� �

FIRST

�

β

� � φ

This would allow the parser to make a correct choice with a lookahead of
only one symbol!

The example grammar has this property!

86

Left factoring

What if a grammar does not have this property?

Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
α common to two or more of its alternatives.

if α

� � ε then replace all of the A productions
A � αβ1

�

αβ2

�
� � �

�

αβn

with
A � αA

�

A

� � β1

�

β2

�
� � �

�

βn

where A

�

is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

87

Example

Consider a right-recursive version of the expression grammar:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� � �

expr

�

3

� �

term

� � �

expr

�

4

� �

term

�

5

�

term

�

:: � �

factor

�

�

�

term
�

6

� �

factor

� � �

term
�

7

� �

factor

�

8

�

factor

�

:: � � � �

9

� �

To choose between productions 2, 3, & 4, the parser must see past the � � �

or

�

and look at the

�

, � , � , or
�

.

FIRST

�

2
� �

FIRST

�

3

� �

FIRST

�

4

� � � φ

This grammar fails the test.

Note: This grammar is right-associative.

88

Example

There are two nonterminals that must be left factored:

�

expr

�

:: � �

term

� � �

expr

�

� �

term

� � �

expr

�

� �

term

�

�

term

�

:: � �

factor

�

�

�

term

�

� �

factor

� � �

term

�

� �

factor

�

Applying the transformation gives us:

�

expr

�

:: � �

term
� �

expr

� �

�

expr

� �

:: � � �
expr

�

� � �

expr

�

�
ε

�

term
�

:: � �

factor

� �

term

� �

�

term
� �

:: � �
�

term

�

� � �

term

�

�

ε

89

Example

Substituting back into the grammar yields

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� �

expr

� �

3

�

expr

� �

:: � � �

expr

�

4

� � �

expr

�

5

�

ε
6

�

term

�

:: � �

factor

� �

term
� �

7

�

term

� �

:: � �
�

term
�

8

� � �

term
�

9

�

ε
10

�

factor

�

:: � � � �

11
� �

Now, selection requires only a single token lookahead.

Note: This grammar is still right-associative.

90

Example

Sentential form Input
–

�

goal

� �� �

� � �

1

�

expr

� �� �

� � �

2

�

term

� �

expr

� � �� �

� � �

6

�

factor

� �

term

� � �

expr

� � �� �

� � �

11

 � �

term

� � �

expr

� � �� �

� � �

–

 � �

term

� � �

expr

� � � �
�

� � �
9

 �ε

�

expr

� � � �
�

�
4

 �
�

�

expr

� � �
�

� � �

–

 �
�

�

expr

� � �

� � � �

2

 �
�

�

term

� �

expr

� � � �

� � � �

6

 �
�

�

factor

� �

term

� � �

expr

� � � �

� � � �

10

 �
� � � 	 �

term

� � �

expr

� � � �

� � � �

–

 �
� � � 	 �

term

� � �

expr

� � � �

� �� �

7

 �
� � � 	 � �

term

� �

expr

� � � �

� �� �

–

 �
� � � 	 � �

term

� �

expr
� � � �

� � ��

6

 �
� � � 	 � �

factor

� �

term
� � �

expr

� � � �

� � ��

11

 �
� � � 	 � � �

term
� � �

expr

� � � �

� � ��

–

 �
� � � 	 � � �

term
� � �

expr

� � � �

� � � �

9

 �
� � � 	 � � �

expr

� � � �

� � � �

5

 �
� � � 	 � � � �

� � � �

The next symbol determined each choice correctly.

91

Back to left-recursion elimination

Given a left-factored CFG, to eliminate left-recursion:

if

�

A � Aα then replace all of the A productions
A � Aα

�

β

��
� � �

�

γ
with

A � NA

�

N � β

�
� � �

�

γ
A

� � αA

� �

ε
where N and A

�

are new productions.

Repeat until there are no left-recursive productions.

92

Generality

Question:

By left factoring and eliminating left-recursion, can we transform
an arbitrary context-free grammar to a form where it can be pre-
dictively parsed with a single token lookahead?

Answer:

Given a context-free grammar that doesn’t meet our conditions,
it is undecidable whether an equivalent grammar exists that does
meet our conditions.

Many context-free languages do not have such a grammar:

�

an0bn �

n
�

1
� �

an1b2n �

n

�

1

�

Must look past an arbitrary number of a’s to discover the 0 or the 1 and so
determine the derivation.

93

Recursive descent parsing

Now, we can produce a simple recursive descent parser from the (right-
associative) grammar.

� � � ��
� � �
� � �
 � � � � �
� � � �

� � �
 � �� � � � �� � � � � � � �
� � � � � � � � �
�

�
 � �� � �� � � � �

 � �� �
� � � �
� � � � � �� � � � � � �
�

�
 � �� � �� � � � �

 � �
 �
 � �� �
 � �� �� � �
 � � �

 � �� �� � �
�

� � � � � �
� �
 � � � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� �
 � �� � � �

 � �
 � � � � � �
� � � � �� � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� �
 � �� � � �

 � �
 �
 � �� � �� �

94

Recursive descent parsing

�
� ��
� � � � � � � � � � � � �� � � � � � �
�

�
 � �� � �� � � � �

 � �
 �
 � �� � �
� � �� � �
 � � �

�
� � �� � �
�

� � � � � �
� � � � � � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �
� � � � �

 � �
 � � � � � �
� � � �� � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �
� � � � �

 � �
 �
 � �� � �� �

� � � � � � �

� � � � � �
� � �� � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �� �

 � �
 � � � � � �
� � � � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �� �

 � �
 �
 � �� � � � � � � �

95

Building the tree

One of the key jobs of the parser is to build an intermediate representation
of the source code.

To build an abstract syntax tree, we can simply insert code at the appropri-
ate points:

� � � � � � � � �

can stack nodes

�

, � � �

� �
� � �� � �
 � � can stack nodes � ,

�

� �
� � � � can pop 3, build and push subtree

�
 � �� �� � �
 � � can stack nodes

�

, �

�
 � �� � �

can pop 3, build and push subtree

� � � � � � �

can pop and return tree

96

Non-recursive predictive parsing

Observation:

Our recursive descent parser encodes state information in its run-
time stack, or call stack.

Using recursive procedure calls to implement a stack abstraction may not
be particularly efficient.

This suggests other implementation methods:

� explicit stack, hand-coded parser

� stack-based, table-driven parser

97

Non-recursive predictive parsing

Now, a predictive parser looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

Rather than writing code, we build tables.

Building tables can be automated!

98

Table-driven parsers

A parser generator system often looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

parser

generator
grammar

This is true for both top-down (LL) and bottom-up (LR) parsers

99

Non-recursive predictive parsing

Input: a string w and a parsing table M for G

� � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � Start Symbol

� � �
� � �
 � � � � �
� � �

�
 �
 � �

� � � � � � � � � � � �

� � � � � � �
� � � � � � � � � � � � �
�

� � � � � � �
� � �
�

� � � �

� � �
� � �
 � � � � �
� � �

 � �

� � � � � �

 � �
 	 � X is a non-terminal � 	

� �

M

��
�

� � �
� � � X � Y1Y2

� � � Yk

� �
�

� � � �

� � � �

Yk � Yk � 1 � � � � � Y1

 � �

� � � � � �

�� � � � � � � � �

100

Non-recursive predictive parsing

What we need now is a parsing table M.

Our expression grammar:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� �

expr

� �

3

�

expr

� �

:: � � �

expr

�

4

� � �

expr

�

5

�

ε
6

�

term

�

:: � �

factor

� �

term

� �

7

�

term

� �

:: � �
�

term

�

8

� � �

term

�

9

�

ε
10

�

factor

�

:: � � � �

11

� �

Its parse table:

�
 � � � � � �

�

$†

�

goal

�

1 1 – – – – –

�

expr

�

2 2 – – – – –

�

expr

� �

– – 3 4 – – 5

�

term

�

6 6 – – – – –

�

term

� �

– – 9 9 7 8 9

�

factor
�

11 10 – – – – –

† we use $ to represent
" ' �

101

FIRST

For a string of grammar symbols α, define FIRST

�

α

�

as:

� the set of terminal symbols that begin strings derived from α:

�

a � Vt

�

α � �

aβ

�

� If α � �

ε then ε �

FIRST

�

α

�

FIRST

�

α

�

contains the set of tokens valid in the initial position in α

To build FIRST

�

X

�

:

1. If X � Vt then FIRST

�

X

�

is

�

X

�

2. If X � ε then add ε to FIRST

�

X

�

.

3. If X � Y1Y2

� � � Yk:

(a) Put FIRST

�

Y1

� � �

ε

�

in FIRST
�

X
�

(b)

�

i : 1 � i

�

k, if ε �

FIRST
�

Y1
� �

� � �

�

FIRST

�

Yi � 1

�

(i.e., Y1

� � � Yi � 1

� �

ε)
then put FIRST

�

Yi
� � �

ε

�

in FIRST

�

X

�

(c) If ε �

FIRST

�

Y1
� �

� � �

�

FIRST

�

Yk

�

then put ε in FIRST

�

X

�

Repeat until no more additions can be made.

102

FOLLOW

For a non-terminal A, define FOLLOW

�

A

�

as

the set of terminals that can appear immediately to the right of A

in some sentential form

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally
appear after it.

A terminal symbol has no FOLLOW set.

To build FOLLOW

�

A

�

:

1. Put $ in FOLLOW

� �

goal

� �

2. If A � αBβ:

(a) Put FIRST

�

β

� � �

ε

�

in FOLLOW

�
B

�

(b) If β � ε (i.e., A � αB) or ε �
FIRST

�

β

�

(i.e., β � �

ε) then put FOLLOW

�

A

�

in FOLLOW

�

B

�
Repeat until no more additions can be made

103

LL(1) grammars

Previous definition
A grammar G is LL(1) iff. for all non-terminals A, each distinct pair of pro-
ductions A � β and A � γ satisfy the condition FIRST

�

β

� �

FIRST
�

γ
� � φ.

What if A � �

ε?

Revised definition
A grammar G is LL(1) iff. for each set of productions A � α1

�

α2

�
� � �

�

αn:

1. FIRST

�

α1

�
� FIRST

�

α2

�
�� � � � FIRST

�

αn

�

are all pairwise disjoint

2. If αi

� �

ε then FIRST

�

α j

� �

FOLLOW

�

A

� � φ �
�

1

�

j

�

n � i

� � j.

If G is ε-free, condition 1 is sufficient.

104

LL(1) grammars

Provable facts about LL(1) grammars:

1. No left-recursive grammar is LL(1)

2. No ambiguous grammar is LL(1)

3. Some languages have no LL(1) grammar

4. A ε–free grammar where each alternative expansion for A begins with
a distinct terminal is a simple LL(1) grammar.

Example

S � aS

�

a

is not LL(1) because FIRST

�

aS

� � FIRST

�

a

� � �

a

�

S � aS

�

S

� � aS

� �

ε
accepts the same language and is LL(1)

105

LL(1) parse table construction

Input: Grammar G

Output: Parsing table M

Method:

1.

�

productions A � α:

(a)

�

a �

FIRST

�

α

�

, add A � α to M

�

A � a

�

(b) If ε �

FIRST

�

α

�

:

i.

�

b �

FOLLOW

�

A

�

, add A � α to M

�

A � b
�

ii. If $ �

FOLLOW

�

A

�

then add A � α to M

�

A � $

�

2. Set each undefined entry of M to
� � � �

If

�

M

�

A � a

�

with multiple entries then grammar is not LL(1).

Note: recall a � b � Vt, so a � b

� � ε

106

Example

Our long-suffering expression grammar:

S � E T � FT

�

E � T E

�

T

� � � T

� �

T

�

ε
E

� � �

E

� � E

�

ε F � �
 � � � �

FIRST FOLLOW

S

� � � 	
�

 � � �

$

�

E

� � � 	
�

 � � �

$

�

E

� �

ε �

�
� �

� �

$

�

T

� � � 	
�

 � � � �
� � � $

�

T

� �

ε �
�

�
� � � �

� � � $

�

F

� � � 	
�

 � � � �
� � �

�
�

�
� $

�

 � � � �

�

� � 	 � � � 	 �

�

� � � �

�

� � � �

�

� � � �

�

�

�
�

�

�

 � � � 	 �

� � �

$
S S � E S � E � � � � �

E E � TE

�

E � TE

�

� � � � �

E

�

� � E
� � �

E E

� � � E � � E

� � ε
T T � FT

�

T � FT
�

� � � � �

T

�

� � T

� � ε T

� � ε T

� � � T T

� � �

T T

� � ε
F F � �

F � � � 	 � � � � �

107

A grammar that is not LL(1)

�

stmt

�

:: � � � �

expr

� � �
� �

stmt

�

� � � �

expr

� � �
� �

stmt

�
 � �
 �

stmt

�

�
� � �

Left-factored:

�

stmt

�

:: � � � �

expr

� � �
� �

stmt

� �

stmt

� � �
� � �

�

stmt

� �

:: �
 � �
 �

stmt

� �

ε

Now, FIRST

� �

stmt

� � � � �

ε �
 � �
 �

Also, FOLLOW

� �

stmt

� � � � �
 � �
 � $

�

But, FIRST

� �

stmt

� � � �

FOLLOW

� �

stmt

� � � � �
 � �
 � � � φ

On seeing
 � �
, conflict between choosing

�

stmt

� �

:: �
 � �
 �

stmt

�

and
�

stmt

� �

:: � ε

� grammar is not LL(1)!

The fix:

Put priority on

�

stmt
� �

:: �
 � �
 �

stmt

�

to associate
 � �
 with clos-
est previous � �
� .

108

Error recovery

Key notion:

� For each non-terminal, construct a set of terminals on which the parser
can synchronize

� When an error occurs looking for A, scan until an element of SYNCH

�

A

�

is found

Building SYNCH:

1. a �

FOLLOW

�

A

� � a �

SYNCH

�

A

�

2. place keywords that start statements in SYNCH

�

A

�

3. add symbols in FIRST

�

A

�

to SYNCH
�

A
�

If we can’t match a terminal on top of stack:

1. pop the terminal

2. print a message saying the terminal was inserted

3. continue the parse

(i.e., SYNCH

�

a

� � Vt � �

a

�

)

109

