
Chapter 2: Lexical Analysis

31

Scanner

code
source tokens

errors

scanner parser IR

� maps characters into tokens – the basic unit of syntax

� � � � ��

becomes

� id, � � � � id, � � � � id, � � �

� character string value for a token is a lexeme

� typical tokens: number, id, �, �, �,
	

,

�� , �

� eliminates white space (tabs, blanks, comments)

� a key issue is speed

� use specialized recognizer (as opposed to

� �)
Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

32

Specifying patterns

A scanner must recognize various parts of the language’s syntax
Some parts are easy:

white space

�ws � ::= �ws � � �

� �ws � � � � �

� � �

� � � � �

keywords and operators
specified as literal patterns:

�� , �

comments
opening and closing delimiters:

	 �
� � �

� 	

33

Specifying patterns

A scanner must recognize various parts of the language’s syntax

Other parts are much harder:

identifiers
alphabetic followed by k alphanumerics (, $, &, . . .)

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9

decimals: integer

�

�
�

digits from 0-9

reals: (integer or decimal)
� � �

(+ or -) digits from 0-9

complex:

� � �

real
��
�

�
real

� � �

We need a powerful notation to specify these patterns

34

Operations on languages

Operation Definition
union of L and M L

	

M � �

s

�

s � L or s � M

�
written L

	

M
concatenation of L and M LM � �

st

�

s � L and t � M
�

written LM
Kleene closure of L L

� � � ∞
i � 0 Li

written L

�

positive closure of L L

� � � ∞
i �1 Li

written L

�

35

Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include
both regular expressions and regular grammars

Regular expressions (over an alphabet Σ):

1. ε is a RE denoting the set

�

ε

�

2. if a � Σ, then a is a RE denoting

�

a

�

3. if r and s are REs, denoting L

�

r

�

and L

�

s
�

, then:

�

r

�

is a RE denoting L

�

r

�

�

r

� � �

s

�

is a RE denoting L

�

r
� �

L
�

s

�

�

r

� �

s

�

is a RE denoting L
�

r
�

L
�
s

�

�

r

� �

is a RE denoting L
�

r
� �

If we adopt a precedence for operators, the extra parentheses can go away.
We assume closure, then concatenation, then alternation as the order of
precedence.

36

Examples

identifier
letter � �

a

�

b

�

c

��
� � �

�

z

�

A

�

B

�

C

�
� � �

�

Z

�

digit � �

0

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

�

id � letter

�

letter

�

digit

� �

numbers
integer � � � � � �

ε

� �

0

� �

1

�

2

�

3

��
� � �

�

9

�

digit
� �

decimal � integer .

�

digit

� �

real � �

integer

�

decimal

� � � � � � �
digit

�

complex � � � �

real � real

� � �

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically

37

Algebraic properties of REs

Axiom Description
r

�

s � s

�

r

�

is commutative
r

� �

s

�

t

� � �

r

�

s

� �

t

�

is associative�

rs

�

t � r

�

st

�

concatenation is associative
r

�

s

�

t

� � rs

�

rt concatenation distributes over
�

�

s

�

t

�

r � sr

�

tr
εr � r ε is the identity for concatenation
rε � r

r

� � �

r

�

ε

� �

relation between
�

and ε
r

� � � r

� �

is idempotent

38

Examples

Let Σ � �

a � b

�

1. a

�

b denotes

�

a � b

�

2.

�

a

�

b

� �

a

�

b

�

denotes

�

aa � ab � ba � bb

�

i.e.,

�

a

�

b

� �

a

�

b

� � aa

�

ab

�

ba

�

bb

3. a

�

denotes

�

ε � a � aa � aaa �� � �
�

4.

�

a

�

b

� �

denotes the set of all strings of a’s and b’s (including ε)
i.e.,

�

a

�

b

� � � �

a

�

b

� � �

5. a

�

a

�

b denotes
�

a � b � ab � aab � aaab � aaaab �� � �
�

39

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier :

0 21

3

digit
other

letter

digit
letter

other

error

accept

identifier
letter � �

a

�

b

�

c

��
� � �

�

z
�

A
�

B

�

C

�
� � �

�

Z

�

digit � �

0

�

1

�

2

�

3
�

4
�

5

�

6

�

7

�

8

�

9

�

id � letter

�

letter
�

digit

� �

40

Code for the recognizer

� * �� � � � � � � * �� � � �

� � � � � � �� ��� � � � (� � � � � � � � �

� � � � (� � � � �

� � � � / � � � � � � � � � � 	� �� � �� �! � �

� * � � � � � � � � � 	

� � �� � � � * �� � � �� �
 � * �� � �

� � � � � � � � � � � � � � �
 � � �� � � � � � � � � �

� � � � * � � � � � � � 	

� �� � �� � � � � � � �! � � � � �

� � � � / � � � � � � � � � / � � � � � � * �� �

� * �� � � � � � � * �� � � �

�� � � ��

� �� � �� � � �� � � � � � � � � � � �

� � � � �� � � � � � � � (�� �

� � � � �� � � �

�� � � ��

� �� � -� � � �� � � � �

� � � � �� � � � �� � � �

� � � � �� � � �

�� � � ��

�

�
� � � �� � � � � � �� � � �

41

Tables for the recognizer

Two tables control the recognizer

� �� � � � � � �� a � z A � Z 0 � 9 other
value letter letter digit other

� � � � � � � �

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables

42

Automatic construction

Scanner generators automatically construct code from regular expression-
like descriptions

� construct a dfa

� use state minimization techniques

� emit code for the scanner

(table driven or direct code)

A key issue in automation is an interface to the parser

� � is a scanner generator supplied with UNIX

� emits C code for scanner

� provides macro definitions for each token
(used in the parser)

43

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it de-
scribes a regular language?

Provable fact:

For any RE r, there is a grammar g such that L

�

r

� � L

�

g
�

.

The grammars that generate regular sets are called regular grammars

Definition:

In a regular grammar, all productions have one of two forms:

1. A � aA

2. A � a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

44

More regular languages

Example: the set of strings containing an even number of zeros and an
even number of ones

s0 s1

s2 s3

1

1

0 0

1

1

0 0

The RE is

�

00

�

11

� � � �

01
�

10
� �

00

�

11

� � �

01

�

10

� �

00

�

11

� � � �

45

More regular expressions

What about the RE

�

a

�

b

� �

abb ?

s0 s1 s2 s3

a

�

b

a b b

State s0 has multiple transitions on a!

� nondeterministic finite automaton

a b
s0

�
s0 � s1

� �

s0

�

s1 –

�

s2

�

s2 –

�

s3

�

46

Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states S � �

s0 �� � � � sn

�

2. a set of input symbols Σ (the alphabet)

3. a transition function move mapping state-symbol pairs to sets of states

4. a distinguished start state s0

5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a ε-transition, and

2. for each state s and input symbol a, there is at most one edge labelled
a leaving s.

A DFA accepts x iff. there exists a unique path through the transition graph
from the s0 to an accepting state such that the labels along the edges spell
x.

47

DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of simulta-
neous states:

� each DFA state corresponds to a set of NFA states

� possible exponential blowup

48

NFA to DFA using the subset construction: example 1

s0 s1 s2 s3

a

�

b

a b b

a b

�

s0

� �

s0 � s1

� �

s0

�

�

s0 � s1

� �

s0 � s1

� �

s0 � s2
�

�

s0 � s2

� �

s0 � s1

� �

s0 � s3
�

�

s0 � s3

� �

s0 � s1

� �
s0

�

�

s0

� �

s0 � s1

� �

s0 � s2

� �

s0 � s3

�

b

a b b

b

a

a

a

49

Constructing a DFA from a regular expression

DFA

DFA

NFA

RE

minimized

movesε

RE �NFA w/ε moves
build NFA for each term
connect them with ε moves

NFA w/ε moves to DFA
construct the simulation
the “subset” construction

DFA � minimized DFA
merge compatible states

DFA � RE
construct Rk

i j

� Rk � 1
ik

�
Rk � 1

kk

� �

Rk � 1
k j

�

Rk � 1
i j

50

RE to NFA

N

�

ε

�

ε

N

�

a

�

a

N

�

A

�

B

�

AN(A)

N(B) B

ε

εε

ε

N

�

AB

� AN(A) N(B) B

N

�

A

� �

ε

AN(A)

ε
ε ε

51

RE to NFA: example

�

a

�

b

� �

abb

a

�

b

1

2 3

6

4 5

ε

ε ε

ε

a

b

�

a

�

b

� �

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

abb
7 8 9 10

a b b

52

NFA to DFA: the subset construction

Input: NFA N
Output: A DFA D with states Dstates and transitions Dtrans

such that L

�

D

� � L

�

N

�

Method: Let s be a state in N and T be a set of states,
and using the following operations:

Operation Definition
ε-closure

�

s

�

set of NFA states reachable from NFA state s on ε-transitions alone
ε-closure

�

T

�

set of NFA states reachable from some NFA state s in T on ε-
transitions alone

move

�

T � a

�

set of NFA states to which there is a transition on input symbol a
from some NFA state s in T

add state T � ε-closure

�

s0

�

unmarked to Dstates
while

�

unmarked state T in Dstates
mark T
for each input symbol a

U � ε-closure

�

move

�

T � a

� �

if U

��� Dstates then add U to Dstates unmarked
Dtrans

�

T � a

� � U
endfor

endwhile

ε-closure

�

s0

�

is the start state of D
A state of D is accepting if it contains at least one accepting state in N

53

NFA to DFA using subset construction: example 2

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

8 9 10
a b b

A � �

0 � 1 � 2 � 4 � 7

�

D � �
1 � 2 � 4 � 5 � 6 � 7 � 9

�

B � �

1 � 2 � 3 � 4 � 6 � 7 � 8

�

E � �
1 � 2 � 4 � 5 � 6 � 7 � 10

�

C � �

1 � 2 � 4 � 5 � 6 � 7

�

a b
A B C
B B D
C B C
D B E
E B C

54

Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

� L � �

pkqk �

� L � �

wcwr �

w � Σ

� �

Note: neither of these is a regular expression!
(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

� alternating 0’s and 1’s

�

ε

�

1

� �

01

� � �

ε

�

0

�

� sets of pairs of 0’s and 1’s

�

01

�

10

� �

55

So what is hard?

Language features that can cause problems:

reserved words
PL/I had no reserved words

� � � � � � � � � � � � � � � � � � � � � � � �
significant blanks

FORTRAN and Algol68 ignore blanks

 � � � � � �
�

� �

 � � � � � �
�

� �

string constants
special characters in strings

� � � � � , � � �

, � � � � , � � � � � �
 � � � � � �

finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN 66 � 6 characters

These can be swept under the rug in the language design

56

How bad can it get?

� � �� � � �� �� � � � � � � 	

�
 	 � 	� �� �� � 	 � �
�

 � � �

� � �
� � � � � �� 	 � 	 � � �� � � 	 � � � 	 � �

� � �� � � �� � � � � 	 � � � � �
�

� � � � � �
�

� �� � �

� � � � � � � � 	 � � �� � � � � �

� � � � � � � � 	 � � � � � � � �

� � �� � � � �

� � �� � � � �
�

�

� � � �� � � �

� � � � �� � � � �

� � � � �� � �� �
�

� � �

� � �� � � � �� � �� �

� � � � �

� � � � � � � � � � � � � �

� � � � � � � �

� � � � �

"� � 	� � � � � � � .� � � � � � � � � � � � (%� + �� � � � � � �

57

