
Chapter 2: Lexical Analysis
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Scanner

code
source tokens

errors

scanner parser IR

� maps characters into tokens – the basic unit of syntax

� � � � ��

becomes

� id, � � � � id, � � � � id, � � �

� character string value for a token is a lexeme

� typical tokens: number, id, �, �, �,
	

,

�� , � 


� eliminates white space (tabs, blanks, comments)

� a key issue is speed

� use specialized recognizer (as opposed to

�  �)
Copyright c

�
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Specifying patterns

A scanner must recognize various parts of the language’s syntax
Some parts are easy:

white space

�ws � ::= �ws � � �

� �ws � � � � �

� � �

� � � � �

keywords and operators
specified as literal patterns:


�� , � 


comments
opening and closing delimiters:

	 �
� � �

� 	
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Specifying patterns

A scanner must recognize various parts of the language’s syntax

Other parts are much harder:

identifiers
alphabetic followed by k alphanumerics ( , $, &, . . . )

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9

decimals: integer

�

�
�

digits from 0-9

reals: (integer or decimal)
� � �

(+ or -) digits from 0-9

complex:

� � �

real
��
�

�
real

� � �

We need a powerful notation to specify these patterns
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Operations on languages

Operation Definition
union of L and M L

	

M � �

s

�

s � L or s � M

�
written L

	

M
concatenation of L and M LM � �

st

�

s � L and t � M
�

written LM
Kleene closure of L L

� � � ∞
i � 0 Li

written L

�

positive closure of L L

� � � ∞
i �1 Li

written L

�
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Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include
both regular expressions and regular grammars

Regular expressions (over an alphabet Σ):

1. ε is a RE denoting the set

�

ε

�

2. if a � Σ, then a is a RE denoting

�

a

�

3. if r and s are REs, denoting L

�

r

�

and L

�

s
�

, then:

�

r

�

is a RE denoting L

�

r

�

�

r

� � �

s

�

is a RE denoting L

�

r
� �

L
�

s

�

�

r

� �

s

�

is a RE denoting L
�

r
�

L
�
s

�

�

r

� �

is a RE denoting L
�

r
� �

If we adopt a precedence for operators, the extra parentheses can go away.
We assume closure, then concatenation, then alternation as the order of
precedence.
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Examples

identifier
letter � �

a

�

b

�

c

��
� � �

�

z

�

A

�

B

�

C

�
� � �

�

Z

�

digit � �

0

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

�

id � letter

�

letter

�

digit

� �

numbers
integer � � � � � �

ε

� �

0

� �

1

�

2

�

3

��
� � �

�

9

�

digit
� �

decimal � integer .

�

digit

� �

real � �

integer

�

decimal

� � � � � � �
digit

�

complex � � � �

real � real

� � �

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically
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Algebraic properties of REs

Axiom Description
r

�

s � s

�

r

�

is commutative
r

� �

s

�

t

� � �

r

�

s

� �

t

�

is associative�

rs

�

t � r

�

st

�

concatenation is associative
r

�

s

�

t

� � rs

�

rt concatenation distributes over
�

�

s

�

t

�

r � sr

�

tr
εr � r ε is the identity for concatenation
rε � r

r

� � �

r

�

ε

� �

relation between
�

and ε
r

� � � r

� �

is idempotent
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Examples

Let Σ � �

a � b

�

1. a

�

b denotes

�

a � b

�

2.

�

a

�

b

� �

a

�

b

�

denotes

�

aa � ab � ba � bb

�

i.e.,

�

a

�

b

� �

a

�

b

� � aa

�

ab

�

ba

�

bb

3. a

�

denotes

�

ε � a � aa � aaa �� � �
�

4.

�

a

�

b

� �

denotes the set of all strings of a’s and b’s (including ε)
i.e.,

�

a

�

b

� � � �

a

�

b

� � �

5. a

�

a

�

b denotes
�

a � b � ab � aab � aaab � aaaab �� � �
�

39



Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier :

0 21

3

digit
other

letter

digit
letter

other

error

accept

identifier
letter � �

a

�

b

�

c

��
� � �

�

z
�

A
�

B

�

C

�
� � �

�

Z

�

digit � �

0

�

1

�

2

�

3
�

4
�

5

�

6

�

7

�

8

�

9

�

id � letter

�

letter
�

digit

� �
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Code for the recognizer

� * �� � � � � � � * �� � � �

� � � � � � �� ��� �  � � (  � � � � � � � � �

� � � � ( � � � � �

�  � � � / � � � � � � � � � � 	� �� � ��  �! � �

� *  � � � � � � � � � 	

� � �� � � � * �� � � �� � 
 � * �� � �

� � � � � � � � � � � � � � � 
 � � �� � � � � � � � � �

� �  � � * � � � � � � � 	

� �� � �� � � � �  � �  �! � �  � � �

�  � � � / � � � � � �  � � � / � � � � � � * �� �

� * �� � � � � � � * �� � � �

�� � � ��

� �� � �� � � �� � � � � � � � � � � �

�  � � � �� � � �  � � � �  (  �� �

� � � � �� � � �

�� � � ��

� �� � -� � � �� �  � � �

�  � � � �� � � � �� �  � �

� � � � �� � � �

�� � � ��

�

�
� � � �� � �  � � � �� � � �
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Tables for the recognizer

Two tables control the recognizer

� �� � � � � � �� a � z A � Z 0 � 9 other
value letter letter digit other

�  � � � � � � �

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables

42



Automatic construction

Scanner generators automatically construct code from regular expression-
like descriptions

� construct a dfa

� use state minimization techniques

� emit code for the scanner

(table driven or direct code )

A key issue in automation is an interface to the parser

�  � is a scanner generator supplied with UNIX

� emits C code for scanner

� provides macro definitions for each token
(used in the parser)
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Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it de-
scribes a regular language?

Provable fact:

For any RE r, there is a grammar g such that L

�

r

� � L

�

g
�

.

The grammars that generate regular sets are called regular grammars

Definition:

In a regular grammar, all productions have one of two forms:

1. A � aA

2. A � a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)
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More regular languages

Example: the set of strings containing an even number of zeros and an
even number of ones

s0 s1

s2 s3

1

1

0 0

1

1

0 0

The RE is

�

00

�

11

� � � �

01
�

10
� �

00

�

11

� � �

01

�

10

� �

00

�

11

� � � �
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More regular expressions

What about the RE

�

a

�

b

� �

abb ?

s0 s1 s2 s3

a

�

b

a b b

State s0 has multiple transitions on a!

� nondeterministic finite automaton

a b
s0

�
s0 � s1

� �

s0

�

s1 –

�

s2

�

s2 –

�

s3

�
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Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states S � �

s0 �� � � � sn

�

2. a set of input symbols Σ (the alphabet)

3. a transition function move mapping state-symbol pairs to sets of states

4. a distinguished start state s0

5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a ε-transition, and

2. for each state s and input symbol a, there is at most one edge labelled
a leaving s.

A DFA accepts x iff. there exists a unique path through the transition graph
from the s0 to an accepting state such that the labels along the edges spell
x.
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DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of simulta-
neous states:

� each DFA state corresponds to a set of NFA states

� possible exponential blowup
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NFA to DFA using the subset construction: example 1

s0 s1 s2 s3

a

�

b

a b b

a b

�

s0

� �

s0 � s1

� �

s0

�

�

s0 � s1

� �

s0 � s1

� �

s0 � s2
�

�

s0 � s2

� �

s0 � s1

� �

s0 � s3
�

�

s0 � s3

� �

s0 � s1

� �
s0

�

�

s0

� �

s0 � s1

� �

s0 � s2

� �

s0 � s3

�

b

a b b

b

a

a

a
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Constructing a DFA from a regular expression

DFA

DFA

NFA

RE

minimized

movesε

RE �NFA w/ε moves
build NFA for each term
connect them with ε moves

NFA w/ε moves to DFA
construct the simulation
the “subset” construction

DFA � minimized DFA
merge compatible states

DFA � RE
construct Rk

i j

� Rk � 1
ik

�
Rk � 1

kk

� �

Rk � 1
k j

�

Rk � 1
i j
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RE to NFA

N

�

ε

�

ε

N

�

a

�

a

N

�

A

�

B

�

AN(A)

N(B) B

ε

εε

ε

N

�

AB

� AN(A) N(B) B

N

�

A

� �

ε

AN(A)

ε
ε ε
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RE to NFA: example

�

a

�

b

� �

abb

a

�

b

1

2 3

6

4 5

ε

ε ε

ε

a

b

�

a

�

b

� �

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

abb
7 8 9 10

a b b
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NFA to DFA: the subset construction

Input: NFA N
Output: A DFA D with states Dstates and transitions Dtrans

such that L

�

D

� � L

�

N

�

Method: Let s be a state in N and T be a set of states,
and using the following operations:

Operation Definition
ε-closure

�

s

�

set of NFA states reachable from NFA state s on ε-transitions alone
ε-closure

�

T

�

set of NFA states reachable from some NFA state s in T on ε-
transitions alone

move

�

T � a

�

set of NFA states to which there is a transition on input symbol a
from some NFA state s in T

add state T � ε-closure

�

s0

�

unmarked to Dstates
while

�

unmarked state T in Dstates
mark T
for each input symbol a

U � ε-closure

�

move

�

T � a

� �

if U

��� Dstates then add U to Dstates unmarked
Dtrans

�

T � a

� � U
endfor

endwhile

ε-closure

�

s0

�

is the start state of D
A state of D is accepting if it contains at least one accepting state in N
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NFA to DFA using subset construction: example 2

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

8 9 10
a b b

A � �

0 � 1 � 2 � 4 � 7

�

D � �
1 � 2 � 4 � 5 � 6 � 7 � 9

�

B � �

1 � 2 � 3 � 4 � 6 � 7 � 8

�

E � �
1 � 2 � 4 � 5 � 6 � 7 � 10

�

C � �

1 � 2 � 4 � 5 � 6 � 7

�

a b
A B C
B B D
C B C
D B E
E B C
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Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

� L � �

pkqk �

� L � �

wcwr �

w � Σ

� �

Note: neither of these is a regular expression!
(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

� alternating 0’s and 1’s

�

ε

�

1

� �

01

� � �

ε

�

0

�

� sets of pairs of 0’s and 1’s

�

01

�

10

� �
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So what is hard?

Language features that can cause problems:

reserved words
PL/I had no reserved words

� � � � � � � � � � � �  � �  �  � �   � �  � � � � �
significant blanks

FORTRAN and Algol68 ignore blanks


 � � � � � �
�

� �


 � � � � � �
�

� �

string constants
special characters in strings

�  � � � � , � � �

, � � � � , � � � � � � 
  � � � � � �

finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN 66 � 6 characters

These can be swept under the rug in the language design
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How bad can it get?

� � �� � � �� �� � � � � � � 	

� 
 	 � 	� �� �� � 	 � �
�

 � � �

� � � 
� � � � � �� 	 � 	 � � �� � � 	 �  � � 	 �  �

� � �� � � �� � � � � 	 � � � � �
�

� � � � � �
�

� �� � �

� � � � � � � � 	 � � �� � � � � �

� � � � � � � � 	 � � � � � � � �

� � �� � � � �

� � �� � � � �
�

�

� � � �� � � �

� � � � �� � � � �

� � � � �� � �� �
�

� � �

� � �� � � � �� � �� �

� � � � �

� � � � � � � � � � � � � �

� � � � � � � �

� � � � �

"� � 	� � � � � � �  .� � � � � � � � � � � �  ( %� + �� � �  � � �   �
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