Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (1)
Principle of Compilers

Lecture IX: Principles of Code
Optimization

Alessandro Artale
Faculty of Computer Science — Free University of Bolzano
Room: 221
artale@nf.unibz. it
http://www. i nf.unibz.it/~artal e/

2003/2004 — Second Semester

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale)

Summary of Lecture IX

e Code Optimization
e Basic Blocks and Flow Graphs

e Sources of Optimization

1. Common Subexpression Elimination
Copy Propagation
Dead-Code Elimination

Constant Folding

o B~ w0 N

Loop Optimization

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale ?3)

Code Optimization: Intro

e Intermediate Code undergoes various transformations—called Optimiza-
tions—to make the resulting code running faster and taking less space.

e Optimization never guarantees that the resulting code is the best possible.

e We will consider only Machine-Independent Optimizations—i.e., they don’t
take Into consideration any properties of the target machine.

e The techniques used are a combination of Control-Flow and Data-Flow
analysis.

— Control-Flow Analysis. Identifies loops in the flow graph of a program
since such loops are usually good candidates for improvement.

— Data-Flow Analysis. Collects information about the way variables are
used in a program.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (4

Criteria for Code-Improving Transformations

e The best transformations are those that yield the most benefit for the least
effort.

1. A transformation must preserve the meaning of a program. It’s better to

miss an opportunity to apply a transformation rather than risk changing
what the program does.

2. A transformation must, on the average, speed up a program by a
measurable amount.

3. Avoid code-optimization for programs that run occasionally or during
debugging.

4. Remember! Dramatic improvements are usually obtained by improving
the source code: The programmer is always responsible in finding the
best possible data structures and algorithms for solving a problem.

Free University of BoIzano—Princip_)Ies of Compilers. Lecture 1X, 2003/2004 — A.Artale (5)
Quicksort: An Example Program

e We will use the sorting program Quicksort to illustrate the effects of the
various optimization techniques.

voi d qui cksort(m n)
I nt mn;

{

Int 1,],V,X;
1f (n <= m return;

Il = ml, J] =n; v = a[n]; [* fragment begins here */
while (1) {
doi =1i+1; while (a[i]<v);

doj =j-1; while (a[j]>v);

i f (i>=)) break;

x =a[i]; a[i] =a[]]; a[]] =x;
}
x = a[i]; a[t] = a[n]; a[n] =x; [* fragment ends here */
qui cksort(mj); quicksort(i+1,n);

Free University of BoIzano—_PrincipIes of Compilers. Lecture 1X, 2003/2004 — A.Artale (6)
Quicksort: An Example Program (Cont.)

e The following is the three-address code for a fragment of Quicksort.

" 4 e W (16) £, d L 408
L Py tg 1= 4x7
3) t; := 4%n (18) ty 1= alty]
4 v := alt;] C19) ~ a1 =

(5) 1 "= 1%+ (20) Lo 1= 47
(6) tp := 4«1 (@1) " altigl ‘= %

(D) kg is.alt;] (22) goto (5)

(8) if t3 < v goto (5) (23) ty 1= 4+i
20 R (- E e (24) x = alt]
(10) t4 = 4+ (25) tp 1= 4x1
(11) t5 := al[ty] (26) (o W
(12) if ts > v goto (9) (27) tiy 1= altpl
() df 1 >= - goto (23) (28) altp;p] := ty
(14) t¢ := 4xi (29) t;s := 4*n

I
s

(18) . %.2=-alts] (30) alts]

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale @)

Summary

e Code Optimization
e Basic Blocks and Flow Graphs

e Sources of Optimization

1. Common Subexpression Elimination
Copy Propagation
Dead-Code Elimination

Constant Folding

o B~ w0 N

Loop Optimization

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (8)

Basic Blocks and Flow Graphs

e The Machine-Independent Code-Optimization phase consists of control-flow
and data-flow analysis followed by the application of transformations.

e During Control-Flow analysis, a program is represented as a Flow Graph
where:

— Nodes represent Basic Blocks: Sequence of consecutive statements in
which flow-of-control enters at the beginning and leaves at the end
without halt or branches;

— Edges represent the flow of control.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale

9)
Flow Graph:An Example

e Flow graph for the three-address code fragment for quicksort. Each B; Is a
basic block.

A, B
3 ?“1
g
(e =t
V=l Al

B,
i+1]
t2 o= e
t3 = a[tz]
alid ke B o onelo)) o
& B
Jam=g=
t4 = 4*]
ts = altyl
1f tc > v gotorB,
B
if i>=j gOtO B(,

Bs Aéng”’/”’r A‘::::::::sg__ B

te 3= 4Axi byt =M d
% =altel = ”=a[tu]
= 4xi ClSs ‘;*1
. t &= *I
= 4 13
= a[gg] t]4 - a[t”]
= t a[tlz] = Ty
e 9 tlS = 4%n
oo aifeys Ires Tt
e rals e e e

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale

Summary

e Code Optimization

e Basic Blocks and Flow Graphs

e Sources of Optimization

1.

o B~ w0 N

Common Subexpression Elimination
Copy Propagation

Dead-Code Elimination

Constant Folding

Loop Optimization

(10)

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (11)

The Principal Sources of Optimization

e We distinguish local transformations—involving only statements in a single
basic block—from global transformations.

e A Dbasic block computes a set of expressions: A number of transformations

can be applied to a basic block without changing the expressions computed
by the block.

1. Common Subexpressions elimination;
2. Copy Propagation;
3. Dead-Code elimination;

4. Constant Folding.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (12)
Common Subexpressions Elimination

e Frequently a program will include calculations of the same value.

e An occurrence of an expression E is called a common subexpression if £
was previously computed, and the values of variables in £ have no changed
since the previous computation.

e Example. Consider the basic block Bs. The assignments to both ¢7 and ¢4
have common subexpressions and can be eliminated.
After local common subexpression elimination, Bs is transformed as:

tlg .= 4 %1
T = altg]
tg :=4%7
tg := alts]
a[t6] = 19
alt] :=x

goto By

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (13)
Common Subexpressions Elimination (Cont.)

e Example (Cont.) After local elimination, Bj still evaluates 4 x ¢ and 4 x 5
which are common subexpressions.

e 4 x g 1sevaluated in B3 by t4. Then, the statements
tg := 4% j; tg := altg]; alts] ===
can be replaced by
tg := alt4]; alty] ==z

e Now, alt4] is also a common subexpression, computed in Bs by ¢5. Then,
the statements
tg := alt4]; altg] := tg
can be replaced by
altg] == ts.

e Analogously, the value of z is the same as the value assigned to ¢3 in block
Bs; while tg can be eliminated and replaced by ¢,.

Free University of Bolzano—Principles of Compilers. Lec_ture IX, 200_3/20_04 - A.Artale (14)
Common Subexpressions Elimination (Cont.)

e Example. The following flow graph shows the result of eliminating both
local and global common subexpressions from basic blocks Bs; and Bg.

: B
J RS
tl L 4*n
N = a[tl]
v B,
i+1
4xi
; = alt]
1f t3 < v goto B,
% B
j=-1
47
t5 e = a[t4]
if ts; > v goto Bj;
v B
if i>=7j goto By

3. = Tty]
- tyy i= alti
- 5 s
i akt;l i85

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (15)

DAGs for Determining Common Subexpressions

e To individuate common subexpressions we represent a basic block as a DAG
showing how expressions are re-used in a block.

e A DAG for a Basic Block has the following labels and nodes:
1. Leaves contain unique identifiers, either variable names or constants.
2. Interior nodes contain an operator symbol.

3. Nodes can optionally be associated to a list of variables representing
those variables having the value computed at the node.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (16)

DAGs for Blocks: An Example

e The following shows both a three-address code of a basic block and its

associlated DAG.
(1) t1 :=4 %1

tz = a[tl] /

tg3 ;=4 %1 prod * s

+ t6,pr

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (17)

Summary

e Code Optimization
e Basic Blocks and Flow Graphs

e Sources of Optimization

1. Common Subexpression Elimination
Copy Propagation
Dead-Code Elimination

Constant Folding

o B~ w0 N

Loop Optimization

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (18)

Copy Propagation

e Copy Propagation Rule: Given the copy statement X : = y use y for x
whenever possible after the copy statement.

e Copy Propagation applied to Block B yields:
T =13
alte] :=t5
alty] == 13
goto B

e This transformation together with Dead-Code Elimination (see next slide)
will give us the opportunity to eliminate the assignment x := t3 altogether.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (19)

Dead-Code Elimination

e Avariable isliveata point in a program if its value can be used subsequently,
otherwise it iIs dead.

e A piece of code is dead if data computed is never used elsewhere.
e Dead-Code may appear as the result of previous transformation.
e Dead-Code works well together with Copy Propagation.

e Example. Considering the Block Bs after Copy Propagation we can see that
X 1S never reused all over the code. Thus, X Is a dead variable and we can
eliminate the assignment x := t3 from Bs.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (20)

Constant Folding

e Based on deducing at compile-time that the value of an expression (and in
particular of a variable) is a constant.

e Constant Folding is the transformation that substitutes an expression with a
constant.

e Constant Folding is useful to discover Dead-Code.

e Example. Consider the conditional statement: if (x) goto L.
If, by Constant Folding, we discover that z is always false we can eliminate
both the if-test and the jump to L.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (21)

Summary

e Code Optimization
e Basic Blocks and Flow Graphs

e Sources of Optimization
1. Common Subexpression Elimination
2. Copy Propagation
3. Dead-Code Elimination
4. Constant Folding
5

. Loop Optimization

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (22)

Loop Optimization

e The running time of a program can be improved if we decrease the amount
of instructions in an inner loop.

e Three techniques are useful:
1. Code Motion
2. Reduction in Strength

3. Induction-Variable elimination

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (23)

Code Motion

e If the computation of an expression is loop-invariant this transformation
places such computation before the loop.

e Example. Consider the following while statement:
while (i <= limit - 2) do
The expression limit - 2 is loop invariant. Code motion transformation will
result in:
t:=Ilimit -2;
while (i <=t) do

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (24)

Reduction in Strength

e Is based on the replacement of a computation with a less expensive one.

e Example. Consider the assignment t4 := 4 % j in Block Bs.
] Is decremented by 1 each time, thenty := 4 x] — 4.
Thus, we may replace t; := 4 xj by t4 :=t4 — 4.
Problem: We need to initialize t4 to t4 := 4 % j before entering the Block Bs.

— Result. The substitution of a multiplication by a subtraction will speed up
the resulting code.

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale

Induction Variables

e A variable x is an Induction Variable of a loop if every time the variable x
changes values, it Is incremented or decremented by some constant.

e A common situation is one in which an induction variable, say I, indexes an
array, and some other induction variable, say t, is the actual offset to access
the array:

— Often we can get rid of I.

— In general, when there are two or more Induction Variables it is possible
to get rid of all but one.

(25)

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (26)

Induction Variables Elimination: An Example

e Example. Consider the loop of Bock B3. The variables j and t4 are Induction
Variables. The same applies for variables i and t, in Block Bs.

e After Reduction in Strength is applied to both t> and t4, the only use of i and
] IS to determine the test in By.

e Sincetr :=4xiandty := 4 xjthetestty, > t4 IS equivalenttoi > j.

e After this replacement in the test, both i1 (in Block B5) and j (in Block Bs)
become dead-variables and can be eliminated! (see next slide for the new

optimized code).

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale

Induction Variables Elimination: An Example (Cont.)

e Flow Graph after Reduction in Strength and Induction-Variables elimination.

Bl
i1 := m-1
Ji= N
t, = 4%n
\'4 = a[t]]
t, = 4xi
t4 = 4*]
! B,
= t2+4
— a[tz]
< v goto B,
! B,
= t4—4
= a[t4]
ts > v goto B;
! B,
arfe t2>=t4 g‘OtO B6

(27)

Free University of Bolzano—Principles of Compilers. Lecture X, 2003/2004 — A.Artale (28)

Summary of Lecture IX

e Code Optimization
e Basic Blocks and Flow Graphs

e Sources of Optimization

1. Common Subexpression Elimination
Copy Propagation
Dead-Code Elimination

Constant Folding

o B~ w0 N

Loop Optimization

