
Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (1)

Principle of Compilers
Lecture IX: Principles of Code

Optimization

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

Room: 221

artale@inf.unibz.it

http://www.inf.unibz.it/ �artale/

2003/2004 – Second Semester



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (2)

Summary of Lecture IX

� Code Optimization

� Basic Blocks and Flow Graphs

� Sources of Optimization

1. Common Subexpression Elimination

2. Copy Propagation

3. Dead-Code Elimination

4. Constant Folding

5. Loop Optimization



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (3)

Code Optimization: Intro

� Intermediate Code undergoes various transformations—called Optimiza-

tions—to make the resulting code running faster and taking less space.

� Optimization never guarantees that the resulting code is the best possible.

� We will consider only Machine-Independent Optimizations—i.e., they don’t

take into consideration any properties of the target machine.

� The techniques used are a combination of Control-Flow and Data-Flow

analysis.

– Control-Flow Analysis. Identifies loops in the flow graph of a program

since such loops are usually good candidates for improvement.

– Data-Flow Analysis. Collects information about the way variables are

used in a program.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (4)

Criteria for Code-Improving Transformations

� The best transformations are those that yield the most benefit for the least

effort.

1. A transformation must preserve the meaning of a program. It’s better to

miss an opportunity to apply a transformation rather than risk changing

what the program does.

2. A transformation must, on the average, speed up a program by a

measurable amount.

3. Avoid code-optimization for programs that run occasionally or during

debugging.

4. Remember! Dramatic improvements are usually obtained by improving

the source code: The programmer is always responsible in finding the

best possible data structures and algorithms for solving a problem.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (5)

Quicksort: An Example Program

� We will use the sorting program Quicksort to illustrate the effects of the

various optimization techniques.

void quicksort(m,n)

int m,n;

�

int i,j,v,x;

if (n <= m) return;

i = m-1; j = n; v = a[n]; /* fragment begins here */

while (1)

�

do i = i+1; while (a[i]<v);

do j = j-1; while (a[j]>v);

if (i>=j) break;

x = a[i]; a[i] = a[j]; a[j] =x;

�

x = a[i]; a[i] = a[n]; a[n] =x; /* fragment ends here */

quicksort(m,j); quicksort(i+1,n);

�



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (6)

Quicksort: An Example Program (Cont.)

� The following is the three-address code for a fragment of Quicksort.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (7)

Summary

� Code Optimization

� Basic Blocks and Flow Graphs

� Sources of Optimization

1. Common Subexpression Elimination

2. Copy Propagation

3. Dead-Code Elimination

4. Constant Folding

5. Loop Optimization



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (8)

Basic Blocks and Flow Graphs

� The Machine-Independent Code-Optimization phase consists of control-flow

and data-flow analysis followed by the application of transformations.

� During Control-Flow analysis, a program is represented as a Flow Graph

where:

– Nodes represent Basic Blocks: Sequence of consecutive statements in

which flow-of-control enters at the beginning and leaves at the end

without halt or branches;

– Edges represent the flow of control.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (9)

Flow Graph:An Example

� Flow graph for the three-address code fragment for quicksort. Each
��� is a

basic block.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (10)

Summary

� Code Optimization

� Basic Blocks and Flow Graphs

� Sources of Optimization

1. Common Subexpression Elimination

2. Copy Propagation

3. Dead-Code Elimination

4. Constant Folding

5. Loop Optimization



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (11)

The Principal Sources of Optimization

� We distinguish local transformations—involving only statements in a single

basic block—from global transformations.

� A basic block computes a set of expressions: A number of transformations

can be applied to a basic block without changing the expressions computed

by the block.

1. Common Subexpressions elimination;

2. Copy Propagation;

3. Dead-Code elimination;

4. Constant Folding.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (12)

Common Subexpressions Elimination

� Frequently a program will include calculations of the same value.

� An occurrence of an expression

�

is called a common subexpression if

�

was previously computed, and the values of variables in
�

have no changed

since the previous computation.

� Example. Consider the basic block

��� . The assignments to both

��� and

����

have common subexpressions and can be eliminated.

After local common subexpression elimination,

��� is transformed as:

��	 
� ��
 �

� 
 � � � ��	 �

��� 
� ��
 �

��� 
� � � �� �

� � �	 � 
� ���

� � �� � 
� �

� � � � ���



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (13)

Common Subexpressions Elimination (Cont.)

� Example (Cont.) After local elimination,

��� still evaluates

� 
 �
and

� 
 �

which are common subexpressions.

�

� 
 �

is evaluated in

��� by

��� . Then, the statements

��� 
� ��
 ��� ��� 
� � � �� � � � � �� � 
� �

can be replaced by

��� 
� � � ��� � � � � ��� � 
 � �

� Now, � � � � �

is also a common subexpression, computed in

� � by

� � . Then,

the statements

��� 
� � � ��� � � � � �	 � 
 � ��
can be replaced by

� � �	 � 
� � � .

� Analogously, the value of � is the same as the value assigned to

� � in block

�� ; while

��	 can be eliminated and replaced by

� � .



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (14)

Common Subexpressions Elimination (Cont.)

� Example. The following flow graph shows the result of eliminating both

local and global common subexpressions from basic blocks

� � and
�	 .



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (15)

DAGs for Determining Common Subexpressions

� To individuate common subexpressions we represent a basic block as a DAG

showing how expressions are re-used in a block.

� A DAG for a Basic Block has the following labels and nodes:

1. Leaves contain unique identifiers, either variable names or constants.

2. Interior nodes contain an operator symbol.

3. Nodes can optionally be associated to a list of variables representing

those variables having the value computed at the node.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (16)

DAGs for Blocks: An Example

� The following shows both a three-address code of a basic block and its

associated DAG.� � � ��� 
� ��
 �

� � � � � 
� � � �� �

� � � � � 
� ��
 �

� � � � � 
� � � � � �

�� � � � 
� � � 
 ��

�� � ��	 
� �	 
 � � � �

�
 � �	 
 � 
� ��	

�� � �� 
� � � �

�� � � 
� ��

� �� �� � � � � �� � � � � � � �

+

�	 ,prod

prod *

� �
[]

� � []
� � � � (1)

*

����� � � +

�� , i 20

1i4

ba



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (17)

Summary

� Code Optimization

� Basic Blocks and Flow Graphs

� Sources of Optimization

1. Common Subexpression Elimination

2. Copy Propagation

3. Dead-Code Elimination

4. Constant Folding

5. Loop Optimization



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (18)

Copy Propagation

� Copy Propagation Rule: Given the copy statement x := y use y for x

whenever possible after the copy statement.

� Copy Propagation applied to Block

�� yields:

� 
 � � �

� � � � � 
� � �

� � ��� � 
� � �

� � � � ���

� This transformation together with Dead-Code Elimination (see next slide)

will give us the opportunity to eliminate the assignment � 
 � ��� altogether.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (19)

Dead-Code Elimination

� A variable is live at a point in a program if its value can be used subsequently,

otherwise it is dead.

� A piece of code is dead if data computed is never used elsewhere.

� Dead-Code may appear as the result of previous transformation.

� Dead-Code works well together with Copy Propagation.

� Example. Considering the Block
�� after Copy Propagation we can see that

x is never reused all over the code. Thus, x is a dead variable and we can

eliminate the assignment � 
� �� from

�� .



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (20)

Constant Folding

� Based on deducing at compile-time that the value of an expression (and in

particular of a variable) is a constant.

� Constant Folding is the transformation that substitutes an expression with a

constant.

� Constant Folding is useful to discover Dead-Code.

� Example. Consider the conditional statement:

� � � � � � � � � �

.

If, by Constant Folding, we discover that � is always false we can eliminate

both the if-test and the jump to L.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (21)

Summary

� Code Optimization

� Basic Blocks and Flow Graphs

� Sources of Optimization

1. Common Subexpression Elimination

2. Copy Propagation

3. Dead-Code Elimination

4. Constant Folding

5. Loop Optimization



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (22)

Loop Optimization

� The running time of a program can be improved if we decrease the amount

of instructions in an inner loop.

� Three techniques are useful:

1. Code Motion

2. Reduction in Strength

3. Induction-Variable elimination



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (23)

Code Motion

� If the computation of an expression is loop-invariant this transformation

places such computation before the loop.

� Example. Consider the following while statement:

while (i � � limit - 2) do

The expression limit - 2 is loop invariant. Code motion transformation will

result in:

t := limit -2;

while (i � � t) do



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (24)

Reduction in Strength

� Is based on the replacement of a computation with a less expensive one.

� Example. Consider the assignment

��� 
� �
 �

in Block

��� .

j is decremented by 1 each time, then

� � 
 � �
 �

�
�

.

Thus, we may replace

�� 
 � � 
 �

by

�� 
� �� �
�

.

Problem: We need to initialize

��� to

�� 
� � 
 �

before entering the Block

� � .

– Result. The substitution of a multiplication by a subtraction will speed up

the resulting code.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (25)

Induction Variables

� A variable x is an Induction Variable of a loop if every time the variable x

changes values, it is incremented or decremented by some constant.

� A common situation is one in which an induction variable, say i, indexes an

array, and some other induction variable, say t, is the actual offset to access

the array:

– Often we can get rid of i.

– In general, when there are two or more Induction Variables it is possible

to get rid of all but one.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (26)

Induction Variables Elimination: An Example

� Example. Consider the loop of Bock

� � . The variables j and
�� are Induction

Variables. The same applies for variables i and

��� in Block

� � .

� After Reduction in Strength is applied to both

��� and
�� , the only use of i and

j is to determine the test in

�� .

� Since

�� 
� � 
 � and

�� 
� �
 �

the test
�� � �� is equivalent to

� � �

.

� After this replacement in the test, both i (in Block

� � ) and j (in Block

�� )

become dead-variables and can be eliminated! (see next slide for the new

optimized code).



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (27)

Induction Variables Elimination: An Example (Cont.)

� Flow Graph after Reduction in Strength and Induction-Variables elimination.



Free University of Bolzano–Principles of Compilers. Lecture IX, 2003/2004 – A.Artale (28)

Summary of Lecture IX

� Code Optimization

� Basic Blocks and Flow Graphs

� Sources of Optimization

1. Common Subexpression Elimination

2. Copy Propagation

3. Dead-Code Elimination

4. Constant Folding

5. Loop Optimization


