Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (1)

Principle of Compilers
Lecture I: Introduction to Compilers

Alessandro Artale
Faculty of Computer Science — Free University of Bolzano
Room: 221
artale@nf.unibz.it
http://www inf.unibz.it/~artal e/

2003/2004 — Second Semester

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale)
Course Overview

e Introduction to the Notion of Compiller.

e Formal Language Theory: Chomsky Classification; Notion é¢foamal
Grammar.

e Lexical Analysis and Automata.

e Syntax Analysis and Parsers:
— Top-Down Parser
— Bottom-Up Parser
— Operator-Precedence Parsing
— LR Parser.

e Syntax-Directed Translation to Translate Programminguzage Constructs.
e Semantic Analysis: Type Checking.

e Code Generation and Principles of Code Optimization.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale 3)

Reading List

Compilers. Principles, Techniques, and Tools, Alfred V. Aho, Ravi Sethi and Jeff
Ullman. Publisher: Prentice Hall, 2003.

Compiler Construction: Principles and Practice, Kenneth C. Louden. Publisher:
Brooks Cole, 1997.

Advanced Compiler Design and Implementation, Steven Muchnick. Publisher:
Morgan Kaufmann, 1997.

Programming Language Processors in Java: Compilers and Interpreters, David
Watt and Deryck Brown. Publisher: Prentice Hall, 2000.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (4)

Summary of Lecture |

e Motivations and Brief History .
e The Architecture of a Compiler.
e The Analysis Phase.

e The Synthesis Phase.

e Towards Executable Code: Assembler, Loader and Linker.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (5)

How are Languages Implemented?

e Two major strategies:

1. Compilers. Translate programs to a machine executable code. They do
extensive preprocessing.

2. Interpreters. Run programs “as is” without preliminary translation:
Successive phases of translation (to machine/interneed@de) and
execution.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (6)

History of High-Level Languages

e 1953 IBM develops the 701: All programming done in assembly.

— Problem: Software costs exceeded hardware costs!

e John BackusSpeedcoding: An interpreted language that ran 10-20 times
slower than hand-written assembly!

e John Backus: Translate high-level code to assembly

— Many thought this impossible. Had already failed in othexjgcts.

— 1954-7 FORTRAN | project: By 1958, > 50% of all software is in
FORTRAN. Cut the development time dramatically (from wesks

hours).

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale @)

Summary

e Motivations and Brief History.

e The Architecture of a Compiler.
e The Analysis Phase.

e The Synthesis Phase.

e Towards Executable Code: Assembler, Loader and Linker.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale
The Context of a Compiler

(8)

A compiler is a program that reads a program written in one language—the

source language—and translates it into an equivalent program in aother
language—thetarget language.

In addition to a compiler, other programs are needed to gémanexecutable
code.
Source Program

l

COMPILER

Target Assembly Program

Y

ASSEMBLER

Relocatable Machine Code

Y

LOADER/LINKER

Absolute !*achine Code

Free University of Bolzano—Principles of Co_mpilers. Leetly 2003/2004 — A:Artale 9)
The Architecture of a Compiler

Compilation can be divided in two parts: Analysis and Sysihe

1. Analysis. Breaks the source program into constituent pieces andesreat
Intermediate representation.

2. Synthesis.Generates the target program from the intermediate reptigese
tion.

The analysis part can be divided along the following phases:
1. Lexical Analysis,
2. Syntax Analysis
3. Semantic Analysis

The synthesis part can be divided along the following phases
1. Intermediate Code Generator,
2. Code Optimizer,

3. Code Generator.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale
The Architecture of a Compiler (Cont.)

Source Program

|

Lexical Analyzer

\

y

Syntax Analyze||

\

y

Semantic Analyze

N

\

y

Intermediate

Code Generat|or

\

y

Code Optimizel

\

y

Code Generatqr

TargetLrogram

(10)

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (11)

Summary

e Motivations and Brief History.

e The Architecture of a Compiler.
e The Analysis Phase.

e The Synthesis Phase.

e Towards Executable Code: Assembler, Loader and Linker.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (12)

Lexical Analysis

e The program is considered as a unique sequence of characters

e ThelLexical Analyzer reads the program from left-to-right and sequence of
characters are grouped irttikens—lexical units with a collective meaning.

e The sequence of characters that gives rise to a token isl¢exiame.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (13)

Lexical Analysis: An Example

Let us consider the following assignment statement:

position := initial + rate x 60

Then, the lexical analyzer will group the characters in ti®¥ing tokens:

Lexene Token

position | ID

initial 1D,
+ +
rate ID
* *

60 NUM

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (14)

Symbol Table

e An essential function of a compiler is to build tBgmbol Tablewhere the
identifiers used in the program are recorded along with uaradtributes.

e Attributes are about: Storage allocated for Ibeits type; its scope (where

In the program is valid); number and types of its argumemntsése theD is
a procedure name); etc.

e When an identifier is detected #D token is generated, the corresponding
lexeme is entered in the Symbol Table, and a pointer to theigosn the
Symbol Table is associated to the token.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (15)

Syntactic Analysis

e TheSyntactic Analysisis also called?arsing.

e Tokens are grouped into grammatical phrases representadPagse Tree
which gives a hierarchical structure to the source program.

e The hierarchical structure is expressed by recursive raékedProductions.

e Example. Productions for assignment statements are:

< assignment > — ID “: =7 <expr >
<expr> — ID|NUM |<expr ><op >< expr >| (< expr >)

<op> — +|—|x*]|/

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (16)

Parse Tree: An Example

assignment

/lz\

ID; expr
position expr expr

D ex‘pr ex‘pr

initial ID; NUM

rate 60

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (17)

Semantic Analysis

e The Semantic Analysisphase checks the program for semantic erfgpé
Checking) and gathers type information for the successive phases.

e Type Checking. Check types of operands (possibly imposing type coer-
cions); No real number as index for array; etc.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (18)

Summary

e Motivations and Brief History.

e The Architecture of a Compiler.
e The Analysis Phase.

e The Synthesis Phase.

e Towards Executable Code: Assembler, Loader and Linker.

Free University of Bolzano—Principles of Co_mpilers. Leetly 2003/2004 — A.Artale (19)
Intermediate Code Generation

e An intermediate code is generated as a program for an absteahine.
e The intermediate code should be easy to translate into tgettarogram.

e As intermediate code we consider tineee-address code, similar to assem-
bly: sequence of instructions with at maistee operands such that:

1. There is at most one operator, in addition to the assighnidrus, we
make explicit the operators precedence.

2. Temporary names must be generated to compute interra@giatations.

Example. The intermediate code for the assignment statement is:

templ := inttoreal(60)
temp2 := 1d3 * templ
temp3 := 1d2 + temp?2

idl := temp3

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (20)

Code Optimization

e This phase attempts to improve the intermediate code sdasiar-running
machine code can be obtained.

e Different compilers adopt different optimization techunes.

Example. A simple optimization of the intermediate code for the assignt
statement could be:

templ := 1d3 % 60.0

idl := 1d2 + templ

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (21)
Code Generation

e This phase generates the target code consisting of asseodsy
1. Memory locations are selected for each variable;
2. Instructions are translated into a sequence of assemsilyictions;
3. Variables and intermediate results are assigned to nyeragisters.

Example. A target code generated from the optimized code of the as®gh
statement could be:

MOVF id3, R2 TheF stands for floating-point instruction

MULF #860.0, R2 The # means that 60.0 Is a constant

MOVF id2, R1 The first and second operand of each instruction
ADDF R2, R1 specify a source and a destination

MOVF R1, id1l

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale

el pd —

SYMBOL Tag

LE

Summing Up

pPosition := initial + rate = &0

b

L lexical analyzer]

id, i=d, +id, * 60

b
[___ syntax analyzer

position

initial

rate

¥
S
idsz' iy
Mgff HREO
¥
semantic analyzer
V
Idlf’ T "
id:f/‘ T ;
id,” inltoreal

I
60

intermediate code generator |

templ := inttoreal(60)
temp2 = 1d3 = templ
temp3d := id2 + temp2
id1 := templ

¥

code aptimizer

templ := id3 + 60.0
id1 := 142 + temp’

code gencrator

MOVF id3, R2
MULF #60.0, R2
MOVF id2Z, R1
ADDF RZ, R1
MOVF R1, id1

(22)

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (23)

Summary

e Motivations and Brief History.

e The Architecture of a Compiler.
e The Analysis Phase.

e The Synthesis Phase.

e Towards Executable Code: Assembler, Loader and Linker.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (24)

Assembler

e The Assembleris responsible for translating the target code—usuallgrass
bly code—into an executable machine code.

e The assembly code is a mnemonic version of machine code ichwhi
1. Names are used instead of binary codes for operaticode(Table).

2. Names are used for operands instead of memory locattgmniool
Tables).

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (25)

Loader and Linker

e The machine code generated by the Assembler can be exeauted o
allocated in Main Memory starting from the address “0”.

e Since this is not possible tHebader will alter the relocatable addresses
of the code to place both instructions and data in the rigitgin Main
Memory.

e The starting free addresk, in Main Memory to allocate the program is
called theRelocation Factor. The Loader must:
1. Add to each relocatable address the relocation fagtor
2. Leave unaltered each absolute address—e.g., addré€sdasices.

e TheLinker links together the different files/modules of a single pergr
and, possibly, adds library files.

Free University of Bolzano—Principles of Compilers. Leetly 2003/2004 — A.Artale (26)

Summary of Lecture |

e Motivations and Brief History.

e The Architecture of a Compiler.
e The Analysis Phase.

e The Synthesis Phase.

e Towards Executable Code: Assembler, Loader and Linker.

