
Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (1)

Principle of Compilers
Lecture I: Introduction to Compilers

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

Room: 221

artale@inf.unibz.it

http://www.inf.unibz.it/∼artale/

2003/2004 – Second Semester



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (2)

Course Overview

• Introduction to the Notion of Compiler.

• Formal Language Theory: Chomsky Classification; Notion of aFormal

Grammar.

• Lexical Analysis and Automata.

• Syntax Analysis and Parsers:

– Top-Down Parser

– Bottom-Up Parser

– Operator-Precedence Parsing

– LR Parser.

• Syntax-Directed Translation to Translate Programming Language Constructs.

• Semantic Analysis: Type Checking.

• Code Generation and Principles of Code Optimization.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (3)

Reading List

Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Ravi Sethi and Jeff

Ullman. Publisher: Prentice Hall, 2003.

Compiler Construction: Principles and Practice, Kenneth C. Louden. Publisher:

Brooks Cole, 1997.

Advanced Compiler Design and Implementation, Steven Muchnick. Publisher:

Morgan Kaufmann, 1997.

Programming Language Processors in Java: Compilers and Interpreters, David

Watt and Deryck Brown. Publisher: Prentice Hall, 2000.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (4)

Summary of Lecture I

• Motivations and Brief History .

• The Architecture of a Compiler.

• The Analysis Phase.

• The Synthesis Phase.

• Towards Executable Code: Assembler, Loader and Linker.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (5)

How are Languages Implemented?

• Two major strategies:

1. Compilers. Translate programs to a machine executable code. They do

extensive preprocessing.

2. Interpreters. Run programs “as is” without preliminary translation:

Successive phases of translation (to machine/intermediate code) and

execution.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (6)

History of High-Level Languages

• 1953 IBM develops the 701: All programming done in assembly.

– Problem: Software costs exceeded hardware costs!

• John Backus:Speedcoding: An interpreted language that ran 10-20 times

slower than hand-written assembly!

• John Backus: Translate high-level code to assembly

– Many thought this impossible. Had already failed in other projects.

– 1954-7 FORTRAN I project: By 1958,> 50% of all software is in

FORTRAN. Cut the development time dramatically (from weeksto

hours).



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (7)

Summary

• Motivations and Brief History.

• The Architecture of a Compiler.

• The Analysis Phase.

• The Synthesis Phase.

• Towards Executable Code: Assembler, Loader and Linker.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (8)

The Context of a Compiler

A compiler is a program that reads a program written in one language–the

source language–and translates it into an equivalent program in another

language–thetarget language.

In addition to a compiler, other programs are needed to generate anexecutable

code.
Source Program

COMPILER

ASSEMBLER

LOADER/LINKER

Absolute Machine Code

Target Assembly Program

Relocatable Machine Code



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (9)

The Architecture of a Compiler

Compilation can be divided in two parts: Analysis and Synthesis.

1. Analysis. Breaks the source program into constituent pieces and creates

intermediate representation.

2. Synthesis.Generates the target program from the intermediate representa-

tion.

The analysis part can be divided along the following phases:

1. Lexical Analysis;

2. Syntax Analysis;

3. Semantic Analysis.

The synthesis part can be divided along the following phases:

1. Intermediate Code Generator;

2. Code Optimizer;

3. Code Generator.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (10)

The Architecture of a Compiler (Cont.)

Source Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Code Optimizer

Code Generator

Target Program



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (11)

Summary

• Motivations and Brief History.

• The Architecture of a Compiler.

• The Analysis Phase.

• The Synthesis Phase.

• Towards Executable Code: Assembler, Loader and Linker.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (12)

Lexical Analysis

• The program is considered as a unique sequence of characters.

• TheLexical Analyzer reads the program from left-to-right and sequence of

characters are grouped intotokens–lexical units with a collective meaning.

• The sequence of characters that gives rise to a token is called lexeme.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (13)

Lexical Analysis: An Example

Let us consider the following assignment statement:

position := initial + rate ∗ 60

Then, the lexical analyzer will group the characters in the following tokens:

Lexeme Token

position ID

:= :=

initial ID

+ +

rate ID

∗ ∗

60 NUM



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (14)

Symbol Table

• An essential function of a compiler is to build theSymbol Tablewhere the

identifiers used in the program are recorded along with various attributes.

• Attributes are about: Storage allocated for theID; its type; its scope (where

in the program is valid); number and types of its arguments (in case theID is

a procedure name); etc.

• When an identifier is detected anID token is generated, the corresponding

lexeme is entered in the Symbol Table, and a pointer to the position in the

Symbol Table is associated to theID token.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (15)

Syntactic Analysis

• TheSyntactic Analysisis also calledParsing.

• Tokens are grouped into grammatical phrases represented bya Parse Tree

which gives a hierarchical structure to the source program.

• The hierarchical structure is expressed by recursive rules, calledProductions.

• Example. Productions for assignment statements are:

< assignment > → ID “ := ” < expr >

< expr > → ID | NUM |< expr >< op >< expr >| (< expr >)

< op > → + | − | ∗ | /



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (16)

Parse Tree: An Example

assignment

ID1

position

:=
expr

expr

ID2

initial

+
expr

expr

ID3

rate

*
expr

NUM

60



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (17)

Semantic Analysis

• TheSemantic Analysisphase checks the program for semantic error (Type

Checking) and gathers type information for the successive phases.

• Type Checking. Check types of operands (possibly imposing type coer-

cions); No real number as index for array; etc.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (18)

Summary

• Motivations and Brief History.

• The Architecture of a Compiler.

• The Analysis Phase.

• The Synthesis Phase.

• Towards Executable Code: Assembler, Loader and Linker.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (19)

Intermediate Code Generation

• An intermediate code is generated as a program for an abstract machine.

• The intermediate code should be easy to translate into the target program.

• As intermediate code we consider thethree-address code, similar to assem-

bly: sequence of instructions with at mostthree operands such that:

1. There is at most one operator, in addition to the assignment. Thus, we

make explicit the operators precedence.

2. Temporary names must be generated to compute intermediate operations.

Example. The intermediate code for the assignment statement is:

temp1 := inttoreal(60)

temp2 := id3 ∗ temp1

temp3 := id2 + temp2

id1 := temp3



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (20)

Code Optimization

• This phase attempts to improve the intermediate code so thatfaster-running

machine code can be obtained.

• Different compilers adopt different optimization techniques.

Example. A simple optimization of the intermediate code for the assignment

statement could be:

temp1 := id3 ∗ 60.0

id1 := id2 + temp1



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (21)

Code Generation

• This phase generates the target code consisting of assemblycode.

1. Memory locations are selected for each variable;

2. Instructions are translated into a sequence of assembly instructions;

3. Variables and intermediate results are assigned to memory registers.

Example. A target code generated from the optimized code of the assignment

statement could be:

MOVF id3, R2 TheF stands for floating-point instruction

MULF #60.0, R2 The # means that 60.0 is a constant

MOVF id2, R1 The first and second operand of each instruction

ADDF R2, R1 specify a source and a destination

MOVF R1, id1



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (22)

Summing Up



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (23)

Summary

• Motivations and Brief History.

• The Architecture of a Compiler.

• The Analysis Phase.

• The Synthesis Phase.

• Towards Executable Code: Assembler, Loader and Linker.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (24)

Assembler

• TheAssembleris responsible for translating the target code–usually assem-

bly code–into an executable machine code.

• The assembly code is a mnemonic version of machine code in which:

1. Names are used instead of binary codes for operations (Code Table).

2. Names are used for operands instead of memory locations (Symbol

Tables).



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (25)

Loader and Linker

• The machine code generated by the Assembler can be executed only if

allocated in Main Memory starting from the address “0”.

• Since this is not possible theLoader will alter the relocatable addresses

of the code to place both instructions and data in the right place in Main

Memory.

• The starting free address,L, in Main Memory to allocate the program is

called theRelocation Factor. The Loader must:

1. Add to each relocatable address the relocation factorL;

2. Leave unaltered each absolute address–e.g., address of I/O devices.

• The Linker links together the different files/modules of a single program

and, possibly, adds library files.



Free University of Bolzano–Principles of Compilers. Lecture I, 2003/2004 – A.Artale (26)

Summary of Lecture I

• Motivations and Brief History.

• The Architecture of a Compiler.

• The Analysis Phase.

• The Synthesis Phase.

• Towards Executable Code: Assembler, Loader and Linker.


