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Functions
• A computer program can be considered as a function from input values to output values. 

What does it mean for a function to be computable? The following 3 models are equivalent! 

• Alonzo Church defined Lambda Calculus in the 1930s to answer this question. He claimed 
that a function is computable if and only if it can be written as a -term. 

• Alan Turing devised Turing machines as a mechanism to define computability. He 
claimed that a function is computable if and only if it can be computed using a Turing 
machine. 

• Kurt Gödel introduced Recursive Function Theory to define computability. He claimed 
that a function is computable if and only if it is general recursive.

λ
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Lambda Calculus

• With its simple syntax and semantics, Lambda Calculus is an excellent 
vehicle to study the meaning of programming languages 

• All functional programming languages (Haskel, LISP, Scheme, etc) are 
syntactic variations of the Lambda Calculus; so their semantics can be 
discussed in the context of Lambda Calculus 

• Denotational Semantics, an important method for the formal specification 
of programming languages, grew out of Lambda Calculus

3



Three Observations About Functions

1. Functions need not be named 

    x => x*x 

2. The choice of name for the function parameter is irrelevant 

    x => x*x 

    y => y*y 

    both are the same function (both return the square of their inputs) 

3. Functions may be rewritten to have exactly one parameter 

    (x,y) => x+y 

    may be written as 

    x => (y => x+y)
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Concepts and Examples

Consider the function: 
cube: Integer → Integer 

where cube(n) = n3 

What is the value of the identifier “cube”? 
How can we represent the object bound to “cube”? 
Can we define this function without giving it a name? like a literal? 

In Lambda Calculus, such a function would be represented by the expression: 
n.n3 

This is an anonymous function (function literal) mapping its input n to n3

λ
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Concepts and Examples
Consider another function: 

f: Integer x Integer → Integer 
where f(m,n) = n2 + m 

Lambda Calculus allows functions to have exactly one parameter 

f would be represented by the expression: 

m. n.(n2 + m) 

This is an anonymous function (function literal) mapping its input (m,n) to (n2 + m) 
by “currying”: m => (n => n2 + m)

λ λ
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Lambda Calculus Syntax

A -term is defined inductively as follows: 
1. A variable is a -term (e.g. x, y, m, n, etc) 
2. If M is a -term and x is a variable, then ( x.M) is a -term 
3. If M and N are -terms then (M N) is a -term 

In the above definition,  
( x.M) is called a lambda abstraction; or in programming terminology the 
definition of a function. Here x is the input parameter (bound variable) and M is 
the body of the function. 
(M N) is called a function application; or in programming terminology a 
function call. M is called the rator and N is called the rand (operator, operand)

λ
λ

λ λ λ
λ λ

λ
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Lambda Calculus Syntax continued

We introduce two other types of -terms: 
4. A number is a -term (e.g. 10, 2, -5, 6.5, etc) 
5. If M and N are -terms then (op M N) is a -term, where op is +, -, *, or / 

These two are not part of the original “pure” Lambda Calculus. 

Well-formed -terms: 
x 
5 
( x.x) 
( x.(* x x)) 
(( x.(* x x)) 5)

λ
λ
λ λ

λ

λ
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Parentheses; Lots of them!

(λx.(λy.(λz.((x z)(y z))))) 
Let us see how this is constructed from the definition: 

x, y, z are λ-terms using rule 1 
(x z)  is a λ-term using rule 3 
(y z)  is a λ-term using rule 3 
((x z) (y z))  is a λ-term using rule 3 
(λz.((xz)(y z)))  is a λ-term using rule 2 
(λy.(λz.((x z)(y z))))   is a λ-term using rule 2 
(λx.(λy.(λz.((x z)(y z)))))   is a λ-term using rule 2
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Expression Trees

xVariable

Number 25

op

NM

(op M N)

(M N)
apply

M N

λx

(λx.M)

M
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Expression tree for 
(λx.(λy.(λz.((x z)(y z)))))

λx

λy

λz

apply

apply apply

zyzx
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Conventions for omitting parentheses

1. Omit outermost parentheses. For example (λx.x) can be written 
as λx.x 

2. Function applications are left-associative; So, omit parentheses 
when not necessary. For example (M N) P can be written as M N P 

3. Body of function abstractions extend as far right as possible. So, 
we can write λx.(MN) as λx.MN 

Using the above conventions, (λx.(λy.(λz.((x z)(y z))))) can be written 
as λx.λy.λz.x z (y z)
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Lambda Calculus Interpreter (PLY Specification)

expr : 
    NUMBER
  | NAME
  | LPAREN expr expr RPAREN
  | LPAREN LAMBDA NAME expr RPAREN
  | LPAREN OP expr expr RPAREN

NUMBER = r’[0-9]+ | [0-9]+”.”[0-9]* | “.”[0-9]*'
LPAREN = r’(‘
RPAREN = r’)'
OP = r’+|-|*|/‘
LAMBDA = r’[Ll][Aa][Mm][Bb][Dd][Aa]’
NAME = r‘[a-zA-z][a-zA-z0-9]*’
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Lambda Calculus Interpreter continued

(λx.x) is written as (lambda x x) 

(λx.(* x x)) is written as (lambda x (* x x)) 

((x y)(x z)) is written as ((x y)(x z)) 

The two syntactic differences are that  

- the “.” after λx is left out 

- λ is spelt out as lambda
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Lambda Calculus Semantics

What is the meaning (semantics, or value) of -terms?  

e.g. what is the meaning of (( x.(* x x)) 5) ? 

Informally, it looks like we are calling the function ( x.(* x x)) with the argument 5. 
The function should return (* 5 5) = 25 

Before we formally define the semantics of -terms , we need a few definitions. 

- Free and Bound Variables 

- -equivalence 

- Substitutions 

- -reductions

λ

λ

λ

λ

α

β
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Free and Bound Variables

In the -term ( x.M) 

- x is a bound variable 

-  is said to bind x in M 

- Any occurrence of x in M is said to be bound in ( x.M) 

- This concept is not novel! We have seen this in CSC 2510/Math 2420 in 
Predicate Calculus; e.g. in x P(x), x in P(x) is bound to the x next to . 

- Also seen in programming languages such as Python in a formal parameter of a 
function (the occurrence of x in the function body is bound to the parameter x)  

  def f(x):
    return x*x

λ λ

λ

λ

∃ ∃
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Free and Bound Variables - Examples

(1) In the -term, x. x y 

- x next to  is bound 

- x in the body of the -term is bound to the x next to  

- y in the body of the -term is free 

(2) In the -term, ( x. x y)( y. z y) 

                                    b  b f     b  f  b 

The variable next to  is always bound! 

(3) In the -term, ( x.( x.x) x), the x in the body of the inner -term is bound to 
the x of that -term and the last x is bound to the x of the outer -term. 

λ λ

λ

λ λ

λ

λ λ λ

λ

λ λ λ λ
λ λ
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Free Variable Definition

FV(M), the set of free variables in M is inductively defined as follows: 

(1) FV[x] = { x } 

(2) FV[ x.M] = FV[M] - { x } 

(3) FV[MN] = FV[M]  FV[N] 

(4) FV[number] = { } 

(5) FV[(op M N)] = FV[M]  FV[N] 

λ

∪

∪
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Free Variables Example

    FV[λx.λy.((λz.λv.z(zv))(xy)(zu))]  
=  FV[((λz.λv.z(zv))(xy)(zu))] - { x, y } 
=  (FV[(λz.λv.z(zv))]  FV[(xy)]  FV[(zu)]) - { x, y } 
=  (FV[(λz.λv.z(zv))]  { x, y}  { z, u }) - { x, y } 
=  ((FV[z(zv)] - { z, v })  { x, y, z, u }) - { x, y } 
=  (({ z, v } - { z, v })  { x, y, z, u }) - { x, y } 
=  { x, y, z, u } - { x, y } 
=  { z, u }

∪ ∪
∪ ∪

∪
∪

λx

apply

apply apply

applyλz

λv

apply

applyz

vz

x y

z u

λy

{z,v}
{z,v}

{z}

{ } {x,y}

{x,y} {z,u}

{x,y,z,u}

{x,z,u}

{z,u}

{z}
{z}

{z} {u}

{y}
{x}

{v}19



-equivalenceα

(λx.x) is the same as (λy.y)

(λx.(* x x)) is the same as (λu.(* u u)) 

All we have done is change the parameter name (bound variable) next to the λ as 
well as in the body of the function.

Renaming the bound variable does not change the abstraction.

Formally,

(λx.M)  =   (λy.M{x y})

where y is a “brand new” variable not appearing in M, and 
M{x y} is M with all occurrences of x replaced by y.

α ←

←
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The same idea is present in programming languages as well. We do this often, i.e. we 
name a parameter of a function one way and after some time decide to give it a better 
name. To do this we consistently change all references to the old name with the new 
name! 

e.g.

-equivalence continuedα

def isPrime(n):
  for i in range(1,n):
     if n%i == 0:
        return False
  return True

def isPrime(num):
  for i in range(1,num):
     if num%i == 0:
        return False
  return True

=α
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• Substitution is defined for free variables
• We will substitute a free variable with a λ-term.
• Substitution will be used during a “function call” when we provide an actual parameter 

value for the formal parameter
• For example, when we call the isPrime function with the actual argument 17, i.e. 

isPrime(17), the formal parameter n would have to be substituted by 17 in the body of 
the function:

Substitution

def isPrime(n):
  for i in range(1, n):
     if n%i == 0:
        return False
  return True

  for i in range(1,17):
     if 17%i == 0:
        return False
  return True

isPrime(17) = 
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(λx. (x y)) [y = 5]    =    (λx. (x 5))
(λx. (x y)) [y = (u v)]    =    (λx. (x (u v)))

Substitution must be done carefully so as not to alter the meaning of the λ-term!

(λx. (x y)) [y = x]       (λx. (x x))

As can be seen, y was a free-variable before, but after the substitution y’s value has 
become bound! Such a case is called a “capture” case.

(λx. (x y)) [y = x]    =    (λx’. (x’ y)) [y = x]   =   (λx’. (x’ x))

Another “capture” example:

(λx. (y x)) [y = (λz.(x z))]       (λx. ((λz.(x z)) x))
(λx. (y x)) [y = (λz.(x z))]    =    (λx’. (y x’)) [y = (λz.(x z))]   =   (λx’. ((λz.(x z)) x’))

≠

α

≠
α

Substitution
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1. x [x = P]               P
2. y [x = P]               y                                            if x  y
3. (M N) [x = P]       (M[x = P]  N[x = P])
4. (λx.M) [x = P]      (λx.M)
5. (λy.M) [x = P]      (λy.M[x = P])                        if  x  y and y  FV[P]
6. (λy.M) [x = P]      (λy’.(M{y y’}[x = P]))       if  x  y and y  FV[P] and y’ is brand new

=
= ≠
=
=
= ≠ ∉
= ← ≠ ∈

Substitution Definition

Case 6 is the “capture” case! Bound variable y is “renamed” to y’ using -equivalence 
and then the substitution is applied.

α
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(λy. (((λx. x) y) x)) [x = (y (λx. x))] 
=
(λy’. (((λx. x) y’) x)) [x = (y (λx. x))] 
=
(λy’. (((λx. x)[x = (y (λx. x))] y’[x = (y (λx. x))]) x[x = (y (λx. x))]))
=
(λy’. (((λx. x) y’) (y (λx. x))))

Substitution Example
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Consider the λ-term, (λx. (* x x)), that denotes the “square” function.
To call this function with argument 5, we will construct the “apply” λ-term:
( (λx. (* x x)) 5)

-reduction allows us to “execute” this function call. We “substitute” the bound 
variable (parameter), x, of the function abstraction with 5 in the body of the function 
abstraction.
( (λx. (* x x)) 5)   =    (* x x) [x = 5]   =   (* 5 5)   =   25

-reduction can be applied only to a λ-term of the form ((λx.M) N)

Note: The formal definition of substitution does not have rules for the impure λ-terms 
which involve arithmetic operators; but the definition can be easily extended.

β

β
β

-reductionβ
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((λx.M) N)  =    M[x = N]

A -redex is of the form ((λx.M) N)

The result of -reduction is called a reduct.

To “execute” a λ-term, -reduction is applied repeatedly until there are no more -
redexes to be found in the λ-term.

A  λ-term without any -redexes is said to be in -normal-form.

β

β

β

β β

β β

-reduction Definitionβ
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((λx.y) (λz.(z z)))  =    y[x = (λz.(z z))]   =   y

((λw.w) (λw.w))   =    w[w = (λw.w)]      =   (λw.w)
β

β

-reduction Examplesβ
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((λx.y) ((λz.(z z)) (λw.w)))   
=    ((λx.y) ((z z)[z = (λw.w)]))   

=     ((λx.y) ((λw.w) (λw.w)))
=    ((λx.y) (w[w = (λw.w)]))

=     ((λx.y) (λw.w))
=    (y[x = (λw.w)])

=     y

β

β

β

((λx.y) ((λz.(z z)) (λw.w)))   
=    (y[x = ((λz.(z z)) (λw.w)))]  

=     y
β

The order of applying -reductions is not 
significant. The end result is the same, 
especially if it terminates.

β



((λx.y) (λz.(z z)))  =    y[x = (λz.(z z))]   =   yβ

-reduction Examples using Expression Trees β
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λx λz

apply

z

y

z

apply

IN y

SUBSTITUTE x

WITH (λz.(z z)) 
yβ



((λw.w) (λw.w))   =    w[w = (λw.w)]      =   (λw.w)β

-reduction Examples using Expression Trees β

30

λw λw

ww

apply

IN w

SUBSTITUTE w

WITH (λw.w) w

λw

β
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-reduction Examples using Expression Trees β

apply

λx

y

apply

λz

apply

z z

λw

w

((λx.y) ((λz.(z z)) (λw.w))) 

apply

λx

y

apply

λw λw

w w

 ((λx.y) ((λw.w) (λw.w))) ((λx.y) (λw.w)) y

apply

λx

y

λw

w

y

βββ
y

β β

y y



Using the Lambda Calculus Interpreter Notation:


((lambda x (* x x)) 2)

((lambda x (* x x)) 2)

=

(* 2 2)

=

4

β

-reduction Examples using Expression Trees β

β math



(( (lambda f (lambda x (f (f x)))) (lambda y (* y (* y y)))) 2) 

=

((lambda x ((lambda y (* y (* y y))) ((lambda y (* y (* y y))) x))) 2)

=

((lambda y (* y (* y y))) ((lambda y (* y (* y y))) 2)))

=

((lambda y (* y (* y y))) (* 2 (* 2 2))) = ((lambda y (* y (* y y))) 8)

=  

(* 8 (* 8 8)) = 512

β

β

β

β

-reduction Examples using Expression Trees (HOF) β
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(( (lambda f (lambda x (f (f x)))) (lambda y (* y (* y y)))) 2)

((lambda x ((lambda y (* y (* y y))) ((lambda y (* y (* y y))) x))) 2)

((lambda y (* y (* y y))) ((lambda y (* y (* y y))) 2)))

β β
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((lambda y (* y (* y y))) ((lambda y (* y (* y y))) 2)))

β β

((lambda y (* y (* y y))) (* 2 (* 2 2)))
((lambda y (* y (* y y))) 8)

(* 8 (* 8 8))

512
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((( (lambda x (lambda y (lambda z (* (x z)(y z))))) (lambda x (* x x))) (lambda x (+ x x))) 5)

Try this out!

see if you can evaluate this to 250?


