# Lambda Calculus <br> Theoretical Foundations of Functional Programming 

Raj Sunderraman
Computer Science Department
Georgia State University

## Functions

- A computer program can be considered as a function from input values to output values. What does it mean for a function to be computable? The following 3 models are equivalent!
- Alonzo Church defined Lambda Calculus in the 1930 os to answer this question. He claimed that a function is computable if and only if it can be written as a $\lambda$-term.
- Alan Turing devised Turing machines as a mechanism to define computability. He claimed that a function is computable if and only if it can be computed using a Turing machine.
- Kurt Gödel introduced Recursive Function Theory to define computability. He claimed that a function is computable if and only if it is general recursive.




## Lambda Calculus

- With its simple syntax and semantics, Lambda Calculus is an excellent vehicle to study the meaning of programming languages
- All functional programming languages (Haskel, LISP, Scheme, etc) are syntactic variations of the Lambda Calculus; so their semantics can be discussed in the context of Lambda Calculus
- Denotational Semantics, an important method for the formal specification of programming languages, grew out of Lambda Calculus


## Three Observations About Functions

1. Functions need not be named

$$
\mathrm{x}=>\mathrm{X}^{*} \mathrm{X}
$$

2. The choice of name for the function parameter is irrelevant

$$
\begin{aligned}
& x=>x^{*} x \\
& y=>y^{*} y
\end{aligned}
$$

both are the same function (both return the square of their inputs)
3. Functions may be rewritten to have exactly one parameter
$(\mathrm{x}, \mathrm{y})=>\mathrm{x}+\mathrm{y}$
may be written as

$$
x=>(y=>x+y)
$$

## Concepts and Examples

Consider the function:

$$
\begin{gathered}
\text { cube: Integer } \rightarrow \text { Integer } \\
\text { where cube }(\mathrm{n})=\mathrm{n}^{3}
\end{gathered}
$$

What is the value of the identifier "cube"?
How can we represent the object bound to "cube"?
Can we define this function without giving it a name? like a literal?

In Lambda Calculus, such a function would be represented by the expression: $\lambda n . n^{3}$
This is an anonymous function (function literal) mapping its input $n$ to $n^{3}$

## Concepts and Examples

Consider another function:

> f: Integer $x$ Integer $\rightarrow$ Integer where $f(m, n)=n^{2}+m$

Lambda Calculus allows functions to have exactly one parameter
f would be represented by the expression:
$\lambda \mathrm{m} . \lambda \mathrm{n} .\left(\mathrm{n}^{2}+\mathrm{m}\right)$

This is an anonymous function (function literal) mapping its input ( $\mathrm{m}, \mathrm{n}$ ) to ( $\mathrm{n}^{2}+\mathrm{m}$ ) by "currying": $m=>\left(n=>n^{2}+m\right)$

## Lambda Calculus Syntax

A $\lambda$-term is defined inductively as follows:

1. A variable is a $\lambda$-term (e.g. $x, y, m, n$, etc)
2. If $M$ is a $\lambda$-term and $x$ is a variable, then ( $\lambda x . M$ ) is a $\lambda$-term
3. If M and N are $\lambda$-terms then $(\mathrm{MN})$ is a $\lambda$-term

In the above definition,
( $\lambda \mathrm{x} . \mathrm{M}$ ) is called a lambda abstraction; or in programming terminology the definition of a function. Here x is the input parameter (bound variable) and M is the body of the function.
( M N ) is called a function application; or in programming terminology a function call. M is called the rator and N is called the rand (operator, operand)

## Lambda Calculus Syntax continued

We introduce two other types of $\lambda$-terms:
4. A number is a $\lambda$-term (e.g. $10,2,-5,6.5$, etc)
5. If M and N are $\lambda$-terms then (op MN ) is a $\lambda$-term, where op is,,$+-{ }^{*}$, or /

These two are not part of the original "pure" Lambda Calculus.

Well-formed $\lambda$-terms:
x
5
( $\lambda \mathrm{x} . \mathrm{x}$ )
( $\lambda \mathrm{x} .\left({ }^{*} \mathrm{x} x\right)$ )
$\left(\left(\lambda \mathrm{x} .\left({ }^{*} \mathrm{xx}\right)\right) 5\right)$

## Parentheses; Lots of them!

( $\lambda \mathrm{x} .(\lambda \mathrm{y} .(\lambda z .((\mathrm{x} \mathrm{z})(\mathrm{y} \mathrm{z})))))$
Let us see how this is constructed from the definition:
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ are $\lambda$-terms using rule 1
$(x z)$ is a $\lambda$-term using rule 3
$(y z)$ is a $\lambda$-term using rule 3
$((\mathrm{x} z)(\mathrm{y} z))$ is a $\lambda$-term using rule 3
( $\lambda \mathrm{z} .((\mathrm{xz})(\mathrm{y} \mathrm{z})))$ is a $\lambda$-term using rule 2
( $\lambda \mathrm{y} .(\lambda \mathrm{z} .((\mathrm{xz})(\mathrm{y} \mathrm{z}))))$ is a $\lambda$-term using rule 2
( $\lambda \mathrm{x} .(\lambda \mathrm{y} .(\lambda \mathrm{z} .((\mathrm{xz})(\mathrm{y} \mathrm{z})))))$ is a $\lambda$-term using rule 2

## Expression Trees



$11$

## Conventions for omitting parentheses

1. Omit outermost parentheses. For example ( $\lambda \mathrm{x} . \mathrm{x}$ ) can be written as $\lambda \mathrm{x} . \mathrm{x}$
2. Function applications are left-associative; So, omit parentheses when not necessary. For example (M N) P can be written as M N P
3. Body of function abstractions extend as far right as possible. So, we can write $\lambda x .(\mathrm{MN})$ as $\lambda x . M N$

Using the above conventions, ( $\lambda \mathrm{x} .(\lambda \mathrm{y} .(\lambda \mathrm{z} .((\mathrm{x} z)(\mathrm{y} z)))))$ can be written as $\lambda \mathrm{x} . \lambda \mathrm{y} . \lambda \mathrm{z} . \mathrm{x} \mathrm{z}(\mathrm{y} \mathrm{z})$

## Lambda Calculus Interpreter (PLY Specification)

```
expr :
            NUMBER
        NAME
        LPAREN expr expr RPAREN
        LPAREN LAMBDA NAME expr RPAREN
        LPAREN OP expr expr RPAREN
NUMBER = r'[0-9]+ | [0-9]+"."[0-9]* | "."[0-9]*'
LPAREN = r'(`
RPAREN = r')'
OP = r'+|-|*|/'
LAMBDA = r'[Ll][Aa][Mm][Bb][Dd][Aa]'
NAME = r'[a-zA-z][a-zA-z0-9]*'
```


# Lambda Calculus Interpreter continued 

( $\lambda \mathrm{x} . \mathrm{x}$ ) is written as (lambda x x )
( $\lambda \mathrm{x} .\left({ }^{*} \mathrm{x} \mathrm{x}\right)$ ) is written as (lambda $\mathrm{x}\left({ }^{*} \mathrm{x} x\right)$ )
$((x y)(x z))$ is written as $((x y)(x z))$

The two syntactic differences are that

- the "." after $\lambda x$ is left out
- $\lambda$ is spelt out as lambda


## Lambda Calculus Semantics

What is the meaning (semantics, or value) of $\lambda$-terms?
e.g. what is the meaning of $\left(\left(\lambda x .\left({ }^{*} \times x\right)\right) 5\right)$ ?

Informally, it looks like we are calling the function ( $\lambda \mathrm{x} .\left({ }^{*} \mathrm{x} x\right)$ ) with the argument 5 . The function should return (* 55 ) $=25$

Before we formally define the semantics of $\lambda$-terms, we need a few definitions.

- Free and Bound Variables
- $\alpha$-equivalence
- Substitutions
- $\beta$-reductions


## Free and Bound Variables

In the $\lambda$-term ( $\lambda$ x.M)

- x is a bound variable
- $\lambda$ is said to bind $x$ in $M$
- Any occurrence of $x$ in $M$ is said to be bound in ( $\lambda x . M$ )
- This concept is not novel! We have seen this in CSC 2510/Math 2420 in Predicate Calculus; e.g. in $\exists \mathrm{x} P(\mathrm{x}), \mathrm{x}$ in $\mathrm{P}(\mathrm{x})$ is bound to the x next to $\exists$.
- Also seen in programming languages such as Python in a formal parameter of a function (the occurrence of $x$ in the function body is bound to the parameter $x$ )

```
def f(x):
    return x*x
```


## Free and Bound Variables - Examples

(1) In the $\lambda$-term, $\lambda \mathrm{x} . \mathrm{x} y$

- x next to $\lambda$ is bound
- x in the body of the $\lambda$-term is bound to the x next to $\lambda$
- $y$ in the body of the $\lambda$-term is free
(2) In the $\lambda$-term, $\begin{array}{r}(\lambda x .\end{array}$

The variable next to $\lambda$ is always bound!
(3) In the $\lambda$-term, ( $\lambda \mathrm{x} .(\lambda \mathrm{x} . \mathrm{x}) \mathrm{x})$, the x in the body of the inner $\lambda$-term is bound to the $x$ of that $\lambda$-term and the last $x$ is bound to the $x$ of the outer $\lambda$-term.

## Free Variable Definition

$\mathrm{FV}(\mathrm{M})$, the set of free variables in M is inductively defined as follows:
(1) $\operatorname{FV}[x]=\{x\}$
(2) $\operatorname{FV}[\lambda \mathrm{x} \cdot \mathrm{M}]=\mathrm{FV}[\mathrm{M}]-\{\mathrm{x}\}$
(3) $\mathrm{FV}[\mathrm{MN}]=\mathrm{FV}[\mathrm{M}] \cup \mathrm{FV}[\mathrm{N}]$
(4) FV[number] $=\{ \}$
(5) $\mathrm{FV}[(\mathrm{op} \mathrm{M} \mathrm{N})]=\mathrm{FV}[\mathrm{M}] \cup \mathrm{FV}[\mathrm{N}]$

## Free Variables Example

$$
\begin{aligned}
& F V[\lambda x . \lambda y .((\lambda z . \lambda v \cdot z(z v))(x y)(z u))] \\
= & F V[((\lambda z \cdot \lambda v \cdot z(z v))(x y)(z u))]-\{x, y\} \\
= & (F V[(\lambda z . \lambda v \cdot z(z v))] \cup F V[(x y)] \cup F V[(z u)])-\{x, y\} \\
= & (F V[(\lambda z \cdot \lambda v \cdot z(z v))] \cup\{x, y\} \cup\{z, u\})-\{x, y\} \\
= & ((F V[z(z v)]-\{z, v\}) \cup\{x, y, z, u\})-\{x, y\} \\
= & ((\{z, v\}-\{z, v\}) \cup\{x, y, z, u\})-\{x, y\} \\
= & \{x, y, z, u\}-\{x, y\} \\
= & \{z, u\}
\end{aligned}
$$



## $\alpha$-equivalence

( $\lambda \mathrm{x} . \mathrm{x}$ ) is the same as ( $\lambda \mathrm{y} . \mathrm{y}$ )
( $\lambda \mathrm{x} .(* \mathrm{xx})$ ) is the same as $(\lambda \mathrm{u} .(* \mathrm{uu}))$
All we have done is change the parameter name (bound variable) next to the $\lambda$ as well as in the body of the function.

Renaming the bound variable does not change the abstraction.
Formally,
$(\lambda \mathrm{x} . \mathrm{M})=\alpha(\lambda \mathrm{y} \cdot \mathrm{M}\{\mathrm{x} \leftarrow \mathrm{y}\})$
where y is a "brand new" variable not appearing in M , and $\mathrm{M}\{\mathrm{x} \leftarrow \mathrm{y}\}$ is M with all occurrences of x replaced by y .

## $\alpha$-equivalence continued

The same idea is present in programming languages as well. We do this often, i.e. we name a parameter of a function one way and after some time decide to give it a better name. To do this we consistently change all references to the old name with the new name!
e.g.

```
def isPrime(n):
    for i in range(1,n):
            return False
    return True
```

        if \(\mathrm{n} \% \mathrm{i}==0: \quad=\alpha\)
    ```
def isPrime(num):
    for i in range(1,num):
        if num%i== 0:
            return False
    return True
```


## Substitution

- Substitution is defined for free variables
- We will substitute a free variable with a $\lambda$-term.
- Substitution will be used during a "function call" when we provide an actual parameter value for the formal parameter
- For example, when we call the isPrime function with the actual argument 17, i.e. isPrime(17), the formal parameter n would have to be substituted by 17 in the body of the function:

```
def isPrime(n):
for i in range(1,n):
    if n%i== 0:
        return False
return True
```


## Substitution

$(\lambda x .(x y))[y=5]=(\lambda x .(x 5))$
$(\lambda x .(\mathrm{x} y))[\mathrm{y}=(\mathrm{u} v)]=(\lambda \mathrm{x} .(\mathrm{x}(\mathrm{u} v)))$
Substitution must be done carefully so as not to alter the meaning of the $\lambda$-term!
$(\lambda x .(x y))[y=x] \quad \neq(\lambda x .(x x))$
As can be seen, y was a free-variable before, but after the substitution y's value has become bound! Such a case is called a "capture" case.
$(\lambda x .(x y))[y=x]=\alpha\left(\lambda x^{\prime} .\left(x^{\prime} y\right)\right)[y=x]=\left(\lambda x^{\prime} .\left(x^{\prime} x\right)\right)$
Another "capture" example:
$(\lambda x .(y \mathrm{x}))[\mathrm{y}=(\lambda \mathrm{z} .(\mathrm{x} \mathrm{z}))] \quad \neq(\lambda \mathrm{x} .((\lambda \mathrm{z} .(\mathrm{x} \mathrm{z})) \mathrm{x}))$
$(\lambda x .(y x))[y=(\lambda z .(x z))] \quad=\alpha \quad\left(\lambda x^{\prime} .\left(y_{x} x^{\prime}\right)\right)[y=(\lambda z .(x z))]=\left(\lambda x^{\prime} .\left(\left(\lambda z .\left(x_{z}\right)\right) x^{\prime}\right)\right)$

## Substitution Definition

$\begin{array}{ll}\text { 1. } \mathrm{x}[\mathrm{x}=\mathrm{P}] & =\mathrm{P} \\ \text { 2. } \mathrm{y}[\mathrm{x}=\mathrm{P}] & =\mathrm{y}\end{array}$
3. $(\mathrm{MN})[\mathrm{x}=\mathrm{P}]=(\mathrm{M}[\mathrm{x}=\mathrm{P}] \mathrm{N}[\mathrm{x}=\mathrm{P}])$
4. $(\lambda x . M)[x=P]=(\lambda x . M)$
5. $(\lambda y \cdot M)[x=P]=(\lambda y \cdot M[x=P]) \quad$ if $x \neq y$ and $y \notin F V[P]$
6. $(\lambda y \cdot M)[x=P]=\left(\lambda y^{\prime} .\left(M\left\{y \leftarrow y^{\prime}\right\}[x=P]\right)\right) \quad$ if $x \neq y$ and $y \in F V[P]$ and $y^{\prime}$ is brand new

Case 6 is the "capture" case! Bound variable $y$ is "renamed" to $y$ ' using $\alpha$-equivalence and then the substitution is applied.

## Substitution Example

```
\((\lambda y \cdot(((\lambda x \cdot x) y) x))[x=(y(\lambda x \cdot x))]\)
\(=\)
\(\left(\lambda y^{\prime} \cdot\left(\left((\lambda x \cdot x) y^{\prime}\right) x\right)\right)[x=(y(\lambda x \cdot x))]\)
=
\(\left(\lambda y^{\prime} \cdot\left(\left((\lambda x \cdot x)[x=(y(\lambda x \cdot x))] y^{\prime}[x=(y(\lambda x \cdot x))]\right) x[x=(y(\lambda x \cdot x))]\right)\right)\)
=
\(\left(\lambda y^{\prime} .\left(\left((\lambda x \cdot x) y^{\prime}\right)(y(\lambda x \cdot x))\right)\right)\)
```


## $\beta$-reduction

Consider the $\lambda$-term, ( $\left.\lambda \mathrm{x} .\left({ }^{*} \mathrm{x} x\right)\right)$, that denotes the "square" function.
To call this function with argument 5 , we will construct the "apply" $\lambda$-term:
( ( $\lambda \mathrm{x} .(* \mathrm{x} \mathrm{x})) 5$ )
$\beta$-reduction allows us to "execute" this function call. We "substitute" the bound variable (parameter), x , of the function abstraction with 5 in the body of the function abstraction.
$((\lambda x .(* x x)) 5)=\beta(* x x)[x=5]=(* 55)=25$
$\beta$-reduction can be applied only to a $\lambda$-term of the form ( $(\lambda$ x.M) N$)$

Note: The formal definition of substitution does not have rules for the impure $\lambda$-terms which involve arithmetic operators; but the definition can be easily extended.

## $\beta$-reduction Definition

$((\lambda \mathrm{x} . \mathrm{M}) \mathrm{N})={ }_{\beta} \mathrm{M}[\mathrm{x}=\mathrm{N}]$

A $\beta$-redex is of the form $((\lambda x . M) N)$

The result of $\beta$-reduction is called a reduct.

To "execute" a $\lambda$-term, $\beta$-reduction is applied repeatedly until there are no more $\beta$ redexes to be found in the $\lambda$-term.

A $\lambda$-term without any $\beta$-redexes is said to be in $\beta$-normal-form.

## $\beta$-reduction Examples

$$
\begin{array}{ll}
((\lambda \mathrm{x} \cdot \mathrm{y})(\lambda \mathrm{z} \cdot(\mathrm{z} \mathrm{z})))=\beta \quad \mathrm{y}[\mathrm{x}=(\lambda \mathrm{z} \cdot(\mathrm{z} \mathrm{z}))]=\mathrm{y} \\
((\lambda \mathrm{w} \cdot \mathrm{w})(\lambda \mathrm{w} \cdot \mathrm{w}))=\beta \quad \mathrm{w}[\mathrm{w}=(\lambda \mathrm{w} \cdot \mathrm{w})] & =(\lambda \mathrm{w} \cdot \mathrm{w}) \\
((\lambda \mathrm{x} . \mathrm{y})((\lambda \mathrm{z} \cdot(\mathrm{z} \mathrm{z}))(\lambda \mathrm{w} \cdot \mathrm{w}))) & \\
=\beta \quad((\lambda \mathrm{x} \cdot \mathrm{y})((\mathrm{z} \mathrm{z})[\mathrm{z}=(\lambda \mathrm{w} \cdot \mathrm{w})])) & \\
=\quad((\lambda \mathrm{x} \cdot \mathrm{y})((\lambda \mathrm{w} \cdot \mathrm{w})(\lambda \mathrm{w} \cdot \mathrm{w}))) & \\
=\beta \quad((\lambda \mathrm{x} \cdot \mathrm{y})(\mathrm{w}[\mathrm{w}=(\lambda \mathrm{w} \cdot \mathrm{w})])) & \\
=\quad((\lambda \mathrm{x} \cdot \mathrm{y})(\lambda \mathrm{w} \cdot \mathrm{w})) & \\
=\beta \quad(\mathrm{y}[\mathrm{x}=(\lambda \mathrm{w} \cdot \mathrm{w})]) & \\
=\quad \mathrm{y} & \begin{array}{l}
\text { The order } \\
=
\end{array} \\
\text { significant } \\
\text { especially }
\end{array}
$$

$$
\begin{aligned}
& ((\lambda x \cdot y)((\lambda z \cdot(\mathrm{z} \mathrm{z}))(\lambda \mathrm{w} \cdot \mathrm{w}))) \\
& =\beta \quad(\mathrm{y}[\mathrm{x}=((\lambda \mathrm{z} \cdot(\mathrm{z} \mathrm{z}))(\lambda \mathrm{w} \cdot \mathrm{w})))] \\
& =\quad \mathrm{y}
\end{aligned}
$$

The order of applying $\beta$-reductions is not significant. The end result is the same, especially if it terminates.
$\beta$-reduction Examples using Expression Trees
$((\lambda \mathrm{x} . \mathrm{y})(\lambda \mathrm{z} .(\mathrm{zz})))=\beta \mathrm{y}[\mathrm{x}=(\lambda \mathrm{z} .(\mathrm{zz}))]=\mathrm{y}$

$\beta$-reduction Examples using Expression Trees
$((\lambda \mathrm{w} . \mathrm{w})(\lambda \mathrm{w} . \mathrm{w}))=\beta \mathrm{w}[\mathrm{w}=(\lambda \mathrm{w} . \mathrm{w})]=(\lambda \mathrm{w} . \mathrm{w})$

$\beta$-reduction Examples using Expression Trees


## $\beta$-reduction Examples using Expression Trees

Using the Lambda Calculus Interpreter Notation:
((lambda x (* x x)) 2)
((lambda x (* $x$ x)) 2)
$=\beta$
(* 2 2)
4


## $\beta$-reduction Examples using Expression Trees (HOF)

```
(( (lambda f (lambda x (f (f x)))) (lambda y (* y (* y y)))) 2)
= \(\beta\)
((lambda x ((lambda y (* y (* y y))) ((lambda y (* y (* y y))) x))) 2)
\(=\beta\)
((lambda y (* y (* y y))) ((lambda y (* y (* y y))) 2)))
\(=\beta\)
((lambda y (* y (* y y))) (* 2 (* 2 2))) \(=((\) lambda y (* y (* y y))) 8)
\(=\beta\)
\((* 8(* 88))=512\)
```


((lambda x ((lambda y (*y (* y y))) ((lambda y (* y (* y y))) x))) 2)
((lambda y (* y (* y y))) ((lambda y (* y (* y y))) 2)))


## Try this out!

((( (lambda x (lambda y (lambda z (* (x z)(y z))))) (lambda x (* x x))) (lambda x (+ x x))) 5)
see if you can evaluate this to 250 ?

