
Lexical and Syntax Analysis

Part I

1

Introduction

2

• Every implementation of Programming Languages (i.e. a compiler) uses a Lexical Analyzer and
a Syntax Analyzer in its initial stages.

• The Lexical Analyzer tokenizes the input program

• The syntax analyzer, referred to as a parser, checks for syntax of the input program and
generates a parse tree.

• Parsers almost always rely on a CFG that specifies the syntax of the programs.

• In this section, we study the inner workings of Lexical Analyzers and Parsers

• The algorithms that go into building lexical analyzers and parsers rely on automata and
formal language theory that forms the foundations for these systems.

Lexemes and Tokens

3

• A lexical analyzer collects characters into groups (lexemes) and assigns
an internal code (a token) to each group.

• Lexemes are recognized by matching the input against patterns.

• Tokens are usually coded as integer values, but for the sake of
readability, they are often referenced through named constants.

Token Lexeme
IDENT result
ASSIGN =
IDENT olds
SUB -
IDENT value
DIV /

INT_LIT 100
SEMI ;

Example assignment statement (tokens/lexemes shown to the right):
result = oldsum - value / 100;

• In earlier compilers, entire input used to be read by Lexical analyzer
and a file of tokens/lexemes produced. Modern day lexers provide the
next token when requested.

• Other tasks performed by Lexers: skip comments and white space;
Detect syntactic errors in tokens

Lexical Analysis (continued)

4

Approaches to building a lexical analyzer:

• Write a formal description of the token patterns of the language and use a software
tool such as PLY to automatically generate a lexical analyzer. We have seen this
earlier!

• Design a state transition diagram that describes the token patterns of the
language and write a program that implements the diagram. We will develop this in
this section.

• Design a state transition diagram that describes the token patterns of the language
and hand-construct a table-driven implementation of the state diagram.

A state transition diagram, or state diagram, is a directed graph. The nodes are
labeled with state names. The edges are labeled with input characters. An edge may
also include actions to be done when the transition is taken.

Lexical Analyzer: An implementation

5

• Consider the problem of building a Lexical Analyzer that recognizes lexemes that appear in
arithmetic expressions, including variable names and integers.

• Names consist of uppercase letters, lowercase letters, and digits, but must begin with a letter.
Names have no length limitations.

• To simplify the state transition diagram, we will treat all letters the same way; so instead of 52
transitions or edges, we will have just one edge labeled Letter. Similarly for digits, we will use the
label Digit.

• The following “actions” will be useful to visualize when thinking about the Lexical Analyzer:

getChar: read the next character from the input

addChar: add the character to the end of the lexeme being recognized

getNonBlank: skip white space

lookup: find the token for single character lexemes

Lexical Analyzer: An implementation (continued)

6

A state diagram that recognizes names,
integer literals, parentheses, and arithmetic
operators.

Shows how to recognize one lexeme; The
process will be repeated until EOF.

The diagram includes actions on each edge.

Next, we will look at a Python program that
implements this state diagram to tokenize
arithmetic expressions.

Lexical Analyzer: An implementation (in Python; TokenTypes.py)

7

TokenTypes.py

import enum

class TokenTypes(enum.Enum):
 LPAREN = 1
 RPAREN = 2
 ADD = 3
 SUB = 4
 MUL = 5
 DIV = 6
 ID = 7
 INT = 8
 EOF = 0

Lexical Analyzer: An implementation (Token.py)

8

Token.py

class Token:

 def __init__(self,tok,value):
 self._t = tok
 self._c = value

 def __str__(self):
 if self._t.value == TokenTypes.ID.value:
 return "<" + self._t + ":"+ self._c + ">"
 elif self._t.value == TokenTypes.INT.value:
 return "<" + self._c + ">"
 else:
 return self._t

 def get_token(self):
 return self._t

 def get_value(self):
 return self._c

Lexical Analyzer: An implementation (Lexer.py)

9

import sys
from TokenTypes import *
from Token import *

Lexical analyzer for arithmetic expressions which
include variable names and positive integer literals
e.g. (sum + 47) / total

class Lexer:

 def __init__(self,s):
 self._index = 0
 self._tokens = self.tokenize(s)

 def tokenize(self,s):
 result = []
 i = 0
 while i < len(s):
 c = s[i]
 if c == '(':
 result.append(Token(TokenTypes.LPAREN, "("))
 i = i + 1
 elif c == ')':
 result.append(Token(TokenTypes.RPAREN, ")"))
 i = i + 1

 elif c == '+':
 result.append(Token(TokenTypes.ADD, "+"))
 i = i + 1
 elif c == '-':
 result.append(Token(TokenTypes.SUB, "-"))
 i = i + 1
 elif c == '*':
 result.append(Token(TokenTypes.MUL, "*"))
 i = i + 1
 elif c == '/':
 result.append(Token(TokenTypes.DIV, "/"))
 i = i + 1
 elif c in ' \r\n\t':
 i = i + 1
 continue
 elif c.isdigit():
 j = i
 while j < len(s) and s[j].isdigit():
 j = j + 1
 result.append(Token(TokenTypes.INT,s[i:j]))
 i = j

Lexical Analyzer: An implementation (Lexer.py)

10

 elif c.isalpha():
 j = i
 while j < len(s) and s[j].isalnum():
 j = j + 1
 result.append(Token(TokenTypes.ID,s[i:j]))
 i = j
 else:
 print("UNEXPECTED CHARACTER ENCOUNTERED: "+c)
 sys.exit(-1)
 result.append(Token(TokenTypes.EOF, “-1"))
 return result

 def lex(self):
 t = None
 if self._index < len(self._tokens):
 t = self._tokens[self._index]
 self._index = self._index + 1
 print("Next Token is: "+str(t.get_token())+", Next lexeme is "+t.get_value())
 return t

Lexical Analyzer: An implementation (LexerTest.py)

11

LexerTest.py

from Lexer import *
from TokenTypes import *

def main():
 input = "(sum + 47) / total"
 lexer = Lexer(input)
 print("Tokenizing ",end="")
 print(input)
 while True:
 t = lexer.lex()
 if t.get_token().value == TokenTypes.EOF.value:
 break

main()

Go to live demo.

Lexical Analyzer: An implementation (Sample Run)

12

macbook-pro:handCodedLexerRecursiveDescentParser raj$ python3 LexerTest.py
Tokenizing (sum + 47) / total
Next Token is: TokenTypes.LPAREN, Next lexeme is (
Next Token is: TokenTypes.ID, Next lexeme is sum
Next Token is: TokenTypes.ADD, Next lexeme is +
Next Token is: TokenTypes.INT, Next lexeme is 47
Next Token is: TokenTypes.RPAREN, Next lexeme is)
Next Token is: TokenTypes.DIV, Next lexeme is /
Next Token is: TokenTypes.ID, Next lexeme is total
Next Token is: TokenTypes.EOF, Next lexeme is -1

Introduction to Parsing

13

• Syntax analysis is often referred to as parsing.

• A parser checks to see if the input program is syntactically correct and constructs a
parse tree.

• When an error is found, a parser must produce a diagnostic message and recover.
Recovery is required so that the compiler finds as many errors as possible.

• Parsers are categorized according to the direction in which they build the parse tree:

• Top-down parsers build the parse tree from the root downwards to the leaves.

• Bottom-up parsers build the parse tree from the leaves upwards to the root.

Notational Conventions

14

Terminal symbols — Lowercase letters at the beginning of the alphabet (a, b, …)

Nonterminal symbols — Uppercase letters at the beginning of the alphabet (A, B, …)

Terminals or nonterminals — Uppercase letters at the end of the alphabet (W, X, Y, Z)

Strings of terminals — Lowercase letters at the end of the alphabet (w, x, y, z)

Mixed strings (terminals and/or nonterminals) — Lowercase Greek letters (α, β, γ, δ)

Top-Down Parser

15

• A top-down parser traces or builds the parse tree in preorder: each node is visited before its branches
are followed.

• The actions taken by a top-down parser correspond to a leftmost derivation.

• Given a sentential form xA that is part of a leftmost derivation, a top-down parser’s task is to find the
next sentential form in that leftmost derivation.

• Determining the next sentential form is a matter of choosing the correct grammar rule that has A as its
left-hand side (LHS).

• If the A-rules are A → bB, A → cBb, and A → a, the next sentential form could be xbB , xcBb , or xa .

• The most commonly used top-down parsing algorithms choose an A-rule based on the token that
would be the first generated by A.

α

α α α

Top-Down Parser (continued)

16

• The most common top-down parsing algorithms are closely related:

• A recursive-descent parser is coded directly from the CFG description of the syntax
of a language.

• An alternative is to use a parsing table rather than code.

• Both are LL algorithms, and both are equally powerful. The first L in LL specifies a left-
to-right scan of the input; the second L specifies that a leftmost derivation is
generated.

• We will look at a hand-written recursive-descent parser later in this section (in Python).

Bottom-Up Parser

17

• A bottom-up parser constructs a parse tree by beginning at the leaves and progressing
toward the root. This parse order corresponds to the reverse of a rightmost derivation.

• Given a right sentential form , a bottom-up parser must determine what substring of is
the right-hand side (RHS) of the rule that must be reduced to its LHS to produce the
previous right sentential form.

• A given right sentential form may include more than one RHS from the grammar. The
correct RHS to reduce is called the handle. As an example, consider the following
grammar and derivation (shown twice):

α α

S : aAc
A : aA
A : b

S => aAc => aaAc => aabc

• A bottom-up parser can easily find the first handle, b, since it is the only RHS of a rule. After
replacing b by the corresponding LHS, we get aaAc, the previous right sentential form.
Finding the next handle is more difficult because both aAc and aA are potential handles.

S => aAc => aaAc => aabc

Bottom-Up Parser (continued)

18

• A bottom-up parser finds the handle of a given right sentential form by examining the
symbols on one or both sides of a possible handle.

• The most common bottom-up parsing algorithms are in the LR family. The L specifies a
left-to-right scan and the R specifies that a rightmost derivation is generated.

• Time Complexity

• Parsing algorithms that work for any grammar are inefficient. The worst-case
complexity of common parsing algorithms is O(n3), making them impractical for use in
compilers.

• Faster algorithms work for only a subset of all possible grammars. These algorithms are
acceptable as long as they can parse grammars that describe programming languages.

• Parsing algorithms used in commercial compilers have complexity O(n).

Recursive-Descent Parsing

19

• A recursive-descent parser consists of a collection of functions, many of which are recursive; it produces
a parse tree in top-down order.

• A recursive-descent parser has one function for each nonterminal in the grammar.

• Consider the expression grammar below (written in EBNF - extended BNF notation):

<expr> : <term> {(+|-) <term>}

<term> : <factor> {(*|/) <factor>}

<factor> : ID | INT_CONSTANT |(<expr>)

These rules can be used to construct a recursive-descent
function named expr that parses arithmetic expressions.

The lexical analyzer is assumed to be a function named
lex. It reads a lexeme and puts its token code in the
global variable next_token. Token codes are defined as
named constants.

Recursive-Descent Parsing (continued)

20

• Writing the recursive-descent functions are quite simple

• We assume two global variables: lexer_object and next_token; Initially the first token is
retrieved into next_token and then the function for the start symbol is called:

import sys
from Lexer import *

next_token = None
l = None

def main():
 global next_token
 global l
 l = Lexer(sys.argv[1])
 next_token = l.lex()
 expr()
 if next_token.get_token().value == TokenTypes.EOF.value:
 print(“PARSE SUCCEEDED”)
 else:
 print(“PARSE FAILED”)

Recursive-Descent Parsing (continued)

21

• The function for <expr> is shown below. For each terminal symbol on the RHS of the
rule, the current value of next_token is matched to that terminal and for each non-
terminal the corresponding function is called. When the function exits, it is made sure that
next_token contains the value of the next token beyond what matches <expr>

expr
Parses strings in the language generated by the rule:
<expr> : <term> {(+|-) <term>}
def expr():
 global next_token
 global l
 print("Enter <expr>")
 term()
 while next_token.get_token().value == TokenTypes.ADD.value or \
 next_token.get_token().value == TokenTypes.SUB.value:
 next_token = l.lex()
 term()
 print("Exit <expr>")

Recursive-Descent Parsing (continued)

22

The function for <term> is similar to the function for <expr>

term
Parses strings in the language generated by the rule:
<term> : <factor> {(*|/) <factor>}
def term():
 global next_token
 global l
 print("Enter <term>")
 factor()
 while next_token.get_token().value == TokenTypes.MUL.value or \
 next_token.get_token().value == TokenTypes.DIV.value:
 next_token = l.lex()
 factor()
 print("Exit <term>")

Recursive-Descent Parsing (continued)

23

The function for <factor> checks to see if the
next_token matches ID or INT_CONSTANT; if
matched, the function exits.

factor
Parses strings in the language generated by the rules:
<factor> -> ID
<factor> -> INT_CONSTANT
<factor> -> (<expr>)
def factor():
 global next_token
 global l
 print("Enter <factor>")
 if next_token.get_token().value == TokenTypes.ID.value or \
 next_token.get_token().value == TokenTypes.INT.value:
 next_token = l.lex()
 else: # if the RHS is (<expr>), pass over (, call expr, check for)
 if next_token.get_token().value == TokenTypes.LPAREN.value:
 next_token = l.lex()
 expr()
 if next_token.get_token().value == TokenTypes.RPAREN.value:
 next_token = l.lex()
 else:
 error("Expecting RPAREN")
 sys.exit(-1)
 else:
 error("Expecting LPAREN")
 sys.exit(-1)
 print("Exit <factor>")

otherwise it matches a left parenthesis, then
calls the function for <expr> and then matches
the right parenthesis. This function also makes
sure next_token contains the next token
beyond the match for <factor>

def error(s):
 print("SYNTAX ERROR: "+s)

Show Demo

Recursive-Descent Parsing

Sample run:

24

$ python3 Parser.py "(sum + 20)/30"
Next Token is: TokenTypes.LPAREN, Next lexeme is (
Enter <expr>
Enter <term>
Enter <factor>
Next Token is: TokenTypes.ID, Next lexeme is sum
Enter <expr>
Enter <term>
Enter <factor>
Next Token is: TokenTypes.ADD, Next lexeme is +
Exit <factor>
Exit <term>
Next Token is: TokenTypes.INT, Next lexeme is 20
Enter <term>
Enter <factor>
Next Token is: TokenTypes.RPAREN, Next lexeme is)
Exit <factor>
Exit <term>
Exit <expr>
Next Token is: TokenTypes.DIV, Next lexeme is /
Exit <factor>
Next Token is: TokenTypes.INT, Next lexeme is 30
Enter <factor>
Next Token is: TokenTypes.EOF, Next lexeme is -1
Exit <factor>
Exit <term>
Exit <expr>
PARSE SUCCEEDED

Recursive-Descent Parsing: if-then-else stmt

25

<ifstmt> ! if (<boolexpr>) <statement> [else <statement>]

def ifstmt():
 global next_token
 global l
 if next_token.get_token().value != TokenTypes.IF.value:
 error(“Expecting IF”)
 else:
 next_token = l.lex()
 if next_token.get_token().value != TokenTypes.LPAREN.value:
 error(“Expecting LPAREN”)
 else:
 next_token = l.lex()
 boolexpr()
 if next_token.get_token().value != TokenTypes.RPAREN.value:
 error(“Expecting RPAREN”)
 else:
 next_token = l.lex()
 statement()
 if next_token.get_token().value == TokenTypes.ELSE.value:
 next_token = l.lex()
 statement()

