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Ambiguity
A grammar that generates a sentence for which there are two or more distinct parse trees is said 
to be ambiguous.
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<assign> : <id> = <expr>

<expr> : <expr> + <expr>

<expr> : <expr> * <expr>

<expr> : ( <expr> )

<expr> : <id>

<id> : A

<id> : B

<id> : C

Example: ambiguous grammar for simple assignment statements
Consider the string: A = B + C * A

ambiguous grammars are problematic 
meaning of sentences cannot be determined uniquely



Operator Precedence
Ambiguity in an expression grammar can often be resolved by rewriting the grammar rules to 
reflect operator precedence. This rewrite will involve additional non-terminals and rules.
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<assign> : <id> = <expr>

<expr> : <expr> + <term>

<expr> : <term>

<term> : <term> * <factor>

<term> : <factor>

<factor> : ( <expr> )

<factor> : <id>

<id> : A

<id> : B

<id> : C

Modified Grammar
Leftmost Derivation for A = B + C * A

<assign> 
 <id> = <expr>
 A = <expr>
 A = <expr> + <term>
 A = <term> + <term>
 A = <factor> + <term>
 A = <id> + <term>
 A = B + <term>
 A = B + <term> * <factor>
 A = B + <factor> * <factor>
 A = B + <id> * <factor>
 A = B + C * <factor>
 A = B + C * <id>
 A = B + C * A

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒



Unique Parse Tree
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Parse tree for A = B + C * A

<assign> : <id> = <expr>

<expr> : <expr> + <term>

<expr> : <term>

<term> : <term> * <factor>

<term> : <factor>

<factor> : ( <expr> )

<factor> : <id>

<id> : A

<id> : B

<id> : C

Modified Grammar

Higher the precedence of operator, the 
lower in the parse tree! 

OR 

Higher the precedence of operator, the 
later in the grammar rules it appears!



Operator Precedence continued
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Rightmost Derivation for A = B + C * AThe connection between parse trees and derivations is very 
close; either can easily be constructed from the other. 

Every derivation with an unambiguous grammar has a 
unique parse tree, although that tree can be represented by 
different derivations. 

For example, the derivation of the sentence A = B + C * A 
(shown to the right) is different from the derivation of the 
same sentence given previously. But, since the grammar we 
are using is unambiguous, the parse tree (shown in previous 
slide) is the same for both derivations.

<assign> 
 <id> = <expr>
 <id> = <expr> + <term>
 <id> = <expr> + <term> *  <factor>
 <id> = <expr> + <term> *  <id>
 <id> = <expr> + <term> * A
 <id> = <expr> + <factor> * A
 <id> = <expr> + <id> * A
 <id> = <expr> + C * A
 <id> = <term> + C * A
 <id> = <factor> + C * A
 <id> = <id> + C * A
 <id> = B + C * A
 A = B + C * A

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒



Associativity
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A grammar that describes expressions must handle associativity 
properly.  

The parse tree to the right shows the left addition lower than 
right addition, indicating left-associativity. 

The left-associativity is because of the left-recursion in the first 
rule for <expr>: 
<expr> : <expr> + <term>

<expr> : <term>

To express right-associativity, we can use right-recursive rules.

Parse tree for 
A = B + C + A



Right-Associativity (exponent operator)
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<assign> : <id> = <expr>

<expr> : <expr> + <term>

<expr> : <term>

<term> : <term> * <factor>

<term> : <factor>

<factor> : <exp> ** <factor>

<factor> : <exp> 

<exp> : ( <expr> )

<exp> : <id>

<id> : A

<id> : B

<id> : C

Right-recursive; right-associative

Left-recursive; left-associative

Left-recursive; left-associative 

precedence(**) > precedence(*) > precedence(+) 

because + is earlier than * which is earlier than ** 
in the grammar.



if-else Grammar Rules
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<if_stmt> : IF ( <logic_expr> ) <stmt>

<if_stmt> : IF ( <logic_expr> ) <stmt> ELSE <stmt>

<stmt> : <if_stmt>

if ( <logic_expr> ) if ( <logic_expr> ) <stmt> else <stmt>

This is an ambiguous grammar!



An unambiguous Grammar for if-else
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The rule for if-else statements in most languages is that an else is matched with the nearest previous 
unmatched if. 

Therefore, between an if and it’s matching else, there cannot be an if statement without an else 
(an “unmatched” statement).  

To make the grammar unambiguous, two new nonterminals are added, representing matched 
statements and unmatched statements: 

<stmt> : <matched>
<stmt> : <unmatched>

<matched> : if ( <logic_expr> ) <matched> else <matched>
<matched> : any non-if statement

<unmatched> : if ( <logic_expr> ) <stmt>
<unmatched> : if ( <logic_expr> ) <matched> else <unmatched>



Attribute Grammars
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• An attribute grammar can be used to describe more of the structure of a programming language than 
is possible with a context-free grammar. 

• Attribute grammars are useful because some language rules (such as type compatibility) are difficult 
to specify with CFGs. 

• Other language rules cannot be specified in CFGs at all, such as the rule that all variables must be 
declared before they are referenced. 

• Rules such as these are considered to be part of the static semantics of a language, not part of the 
language’s syntax. The term “static” indicates that these rules can be checked at compile time. 

• Attribute grammars, designed by Donald Knuth, can describe both syntax and static semantics.



Attribute Grammars: continued
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• An attribute grammar may be informally defined as a context-free grammar that has been extended to provide 
context sensitivity using a set of attributes, assignment of attribute values, evaluation rules, and conditions. 

• A finite, possibly empty set of attributes is associated with each distinct symbol in the grammar. 

• Each attribute has an associated domain of values, such as integers, character and string values, or more complex 
structures. 

• Viewing the input sentence (or program) as a parse tree, attribute grammars can pass values from a node to its 
parent, using a synthesized attribute, or from the current node to a child, using an inherited attribute. 

• In addition to passing attribute values up or down the parse tree, the attribute values may be assigned, modified, 
and checked at any node in the derivation tree.

• In particular, attribute grammars add the following to context-free grammars:

• Attributes or properties that can have values assigned to them.

• Attribute computation functions (semantic functions) that specify how attribute values are computed

• Predicate functions that state the semantic rules of the language.



Attribute Grammars: Formal Definition
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• An attribute grammar is a context-free grammar with the following additional features:

- A set of attributes A(X) for each grammar symbol X

- A set of semantic functions and possibly an empty set of predicate functions for each grammar rule

• A(X) consists of two disjoint sets S(X) and I(X), called synthesized and inherited attributes, respectively

Synthesized attributes are used to pass semantic information up the parse tree

Inherited attributes are used to pass semantic information down and across the tree

• For rule X0 : X1, …, Xn the synthesized attributes for X0 are computed with a semantic function of the form           
S(X0) = f(A(X1),…,A(Xn)).

• Inherited attributes for the symbol Xj , 1 <= j <= n (in the rule X0 : X1, …, Xn) are computed with a semantic 
function of the form I(Xj) = f(A(X0),…,A(Xn)).

To avoid circularity, inherited attributes are often restricted to functions of the form I(Xj) = f(A(X0),…,A(Xj-1)).

• A predicate function is a Boolean function on the union of attribute sets A(X0)  …  A(Xn) and a set of literal 
attribute values. A derivation is allowed to proceed only if all predicates on the rule evaluate to true.

∪ ∪



Attribute Grammars: continued
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• A parse tree of an attribute grammar is the parse tree based on its underlying CFG, with a possibly empty set of 
attribute values attached to each node

• If all the attribute values in a parse tree have been computed, the tree is said to be fully attributed

• Intrinsic attributes: are synthesized attributes of leaf nodes whose values are determined outside the parse tree 
(coming from the Lexer)

• Initially, the only attributes with values are the intrinsic attributes of the leaf nodes. The semantic functions can 
then be used to compute the remaining attribute values.



Attribute Grammars: Example 1
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Syntax Rule:      <proc_def> : PROCEDURE PROCNAME[2] <proc_body> END PROCNAME[5]  SEMI

Predicate:          PROCNAME[2].value == PROCNAME[5].value

The following fragment of an attribute grammar describes the rule that the name on the end of  
an Ada1 procedure must match the procedure’s name:

Here, we have introduced attribute, called value, which is associated with the terminal,  
PROCNAME 

Nonterminals/Terminals that appear more than once in a rule are subscripted to distinguish them.

1 Ada is the name of a famous programming language from the 70s/80s; used by DOD!



Attribute Grammars: Example 2
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Type checking using Attribute Grammars. 

Consider the following CFG: 
assign : var = expr

expr : var + var

expr : var

var : A

var : B

var : C

with the following conditions: 

• Variable types are either int_type or real_type 

• Variables that are added need not be both of the same type. If the types are different then 
the resulting type is real_type 

• The variable on the LHS of the assignment must have the same type as the expression on the 
RHS



Attribute Grammars: Example 2 continued
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Attributes: 

actual_type: A synthesized attribute associated with the nonterminals <var> and <expr>. Stores the 
actual type (int or real) of a variable or expression. In the case of a variable, the actual type is intrinsic.  

expected_type: An inherited attribute associated with the nonterminal <expr>. Stores the type expected 
for the expression.

Syntax rule 3: <expr> : <var>
Semantic rule: <expr>.actual_type = <var>.actual_type
Predicate: <expr>.actual_type == <expr>.expected_type

Syntax rule 4 <var> : A
Semantic rule: <var>.actual_type = look-up(A.value)
Syntax rule 5 <var> : B
Semantic rule: <var>.actual_type = look-up(B.value)
Syntax rule 6 <var> : C
Semantic rule: <var>.actual_type = look-up(C.value)

The look-up function looks up a variable name in the 
symbol table and returns the variable’s type.

Syntax rule 1: <assign> : <var> = <expr>
Semantic rule: <expr>.expected_type = <var>.actual_type

Syntax rule 2: <expr> : <var>[2]  + <var>[3]
Semantic rule: 
<expr>.actual_type = if (<var>[2].actual_type == int_type) and
                                       (<var>[3].actual_type == int_type)
                                   then int_type
                                   else real_type
Predicate: <expr>.actual_type == <expr>.expected_type

Complete Attribute Grammar



Attribute Grammars: Example 2 continued
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The process of decorating the parse tree with attributes could proceed 
in a completely top-down order if all attributes were inherited.

Alternatively, it could proceed in a completely bottom-up order if all the
attributes were synthesized.

Because our grammar has both synthesized and inherited attributes, the 
evaluation process cannot be in any single direction. One possible order 
for attribute evaluation is:

(1) <var>.actual_type = look-up(A) (Rule 4)
(2) <expr>.expected_type = <var>.actual_type (Rule 1)
(3) <var>[2].actual_type = look-up(A) (Rule 4)
      <var>[3].actual_type = look-up(B) (Rule 4)
(4) <expr>.actual_type = either int_type or real_type (Rule 2)
(5) <expr>.expected_type == <expr>.actual_type 
      is either true or false (Rule 2)

Consider the assignment 
A = A + B

Parse Tree

Determining attribute evaluation order is a complex problem, 
requiring the construction of a graph that shows all attribute 
dependencies.



Attribute Grammars: Example 2 continued
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The following figure shows the flow of attribute values. 
Solid lines are used for the parse tree; dashed lines show 
attribute flow.

The following tree shows the final attribute 
values on the nodes.



Attribute Grammars: Example 3
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Consider the language  

{ An Bn Cn | n > 0 }  =  { ABC, AABBCC, AAABBBCCC, … } 

It so happens that there is no CFG for this language! 

But, we can devise an attribute grammar for this language. 

Step 1: Devise a CFG for the language { Am Bn Cp | m > 0, n > 0, p > 0 } = {ABBBC, ABC, AAABC, ….. } 

        <s> : <a> <b> <c> 

        <a> : A | <a> A 

        <b> : B | <b> B 

        <c> : C | <c> C 

Step 2: Extend the CFG by introducing attributes. Introduce synthesized attribute count for non-terminals 
<a>, <b>, and <c>. The semantic functions and the predicate functions are shown in the next slide.



Attribute Grammars: Example 3 continued
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Syntax rule 1:  <s> : <a> <b> <c> 
Predicate: <a>.count == <b.count> and <b>.count == <c>.count  

Syntax rule 2: <a> : A 
Semantic rule: <a>.count = 1 

Syntax rule 3: <a> : <a> A 
Semantic rule: <a>[0].count = <a>[1].count + 1 

Syntax rule 4: <b> : B 
Semantic rule: <b>.count = 1 

Syntax rule 5: <b> : <b> B 
Semantic rule: <b>[0].count = <b>[1].count + 1

Syntax rule 6: <c> : C 
Semantic rule: <c>.count = 1 

Syntax rule 7: <c> : <c> C 
Semantic rule: <c>[0].count = <c>[1].count + 1



Attribute Grammars: Example 3 continued
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<a>.count == <b>.count and <b>.count == <c>.countParse tree for AAABBBCCC



Describing the meaning of programs: Dynamic Semantics
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Reasons for creating a formal semantic definition of a language: 

• Programmers need to understand the meaning of language constructs in order to use them effectively. 

• Compiler writers need to know what language constructs mean to correctly implement them. 

• Programs could potentially be proven correct without testing. 

• The correctness of compilers could be verified. 

• Could be used to automatically generate a compiler. 

• Would help language designers discover ambiguities and inconsistencies. 

Semantics are typically described in English. Such descriptions are often imprecise and incomplete.



Operational Semantics
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Operational semantics describes the meaning of programs by specifying the effects of  running it on a machine. 

• Using an actual machine language for this purpose is not feasible. 

• The individual steps and the resulting state are too small and too numerous. 

• The storage of a real computer is too large and complex, with several levels of memory (registers, cache, 
main memory etc) 

• Intermediate-level languages and interpreters for virtualized computers are used instead. 

• Each construct in the intermediate language must have an obvious and unambiguous meaning. 

• Operational semantics is the method used in textbooks etc. to describe meaning of programming language 
constructs! 

C for-loop 
for (expr1; expr2; expr3) {
  stmts;
}

Meaning 
expr1; 
loop: if (expr2 == 0) goto out
  stmts;
  expr3;
  goto loop
out:

The human is the virtual computer 
who is assumed to execute these 
instructions correctly!



Operational Semantics (continued)
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The following statements would be adequate for describing the semantics of the simple control 
statements of a typical programming language: 

ident = var
ident = ident + 1
ident = ident - 1
ident = un_op var
ident = var bin_op var
goto label
if (var relop var) goto label

where relop is a relational operator, ident is an identifier, and var is either an identifier or a 
constant.  

Adding a few more instructions would allow the semantics of arrays, records, pointers, and 
subprograms to be described.



Denotational Semantics
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• Denotational semantics, which is based on recursive function theory, is the most rigorous and 
most widely known formal method for describing the meaning of programs. 

• A denotational description of a language entity is a function that maps instances of that entity 
onto mathematical objects (e.g. numbers, sets of numbers, etc.) 

• The term denotational comes from the fact that mathematical objects “denote” the meaning of 
syntactic entities. 

• Each mapping function has a domain and a range:  

• The syntactic domain specifies which syntactic structures are to be mapped. 

• The range (a set of mathematical objects) is called the semantic domain.



Two Simple Examples
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Example 1: Binary numbers 

Consider the following grammar to specify string 
representation of binary numbers:  

<bin_num> : ‘0’ 

<bin_num> : ‘1’ 

<bin_num> : <bin_num> ’0’ 

<bin_num> : <bin_num> ’1’

The denotational semantic function Mbin maps syntactic 
objects to nonnegative integers: 

Mbin('0') = 0
Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1

Parse tree for binary string 110



Binary Numbers (continued)
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The meanings, or denoted objects (integers in this case), can be attached to the nodes of the parse tree:

Mbin(’110’)
= 2 * Mbin(’11’) + 0
= 2 * (2 * Mbin(’1’) + 1) + 0
= 2 * (2 * 1 + 1) + 0
= 2 * 3 + 0
= 6



Decimal Numbers
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Example 2: Decimal numbers 

Grammar rules:  

<dec_num> : '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | ‘9’

<dec_num> : <dec_num> ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | ‘9')

Denotational semantic mappings for these grammar rules: 

Mdec('0') = 0
Mdec('1') = 1
…
Mdec(‘9’) = 9
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1
…
Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9

Mdec(’736’)
= 10 * Mdec(’73’) + 6
= 10 * (10 * Mdec(’7’) + 3) + 6
= 10 * (10 * 7 + 3) + 6
= 10 * 73 + 6
= 736



State of a Program
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• The state of a program in denotational semantics consists of the values of the program’s variables. 

• Formally, the state s of a program can be represented as a set of ordered pairs: 

              s = {<i1, v1>, <i2, v2>, …, <in, vn>}

  where, i1,…, in are names of variables and the v1,…,vn their associated current values. 

• Any of the v’s can have the special value undef, which indicates that its associated variable is 
currently undefined. 

• Let VARMAP be a function of two parameters, a variable name and the program state. The value of 
VARMAP(ij, s) is vj. 

• Most semantics mapping functions for language constructs map states to states. These state 
changes are used to define the meanings of the constructs. 

• Some constructs, such as expressions, are mapped to values, not states.



Expressions
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• In order to develop a concise denotational definition of the semantics of expressions, the following 
simplifications will be assumed:  
• No side effects. 
• Operators are + and *. 
• At most one operator. 
• Operands are scalar integer variables and integer literals. 
• No parentheses. 
• Value of an expression is an integer. 
• Errors never occur during evaluation; however, the value of a variable may be undefined. 

• Here is a CFG for such expressions:
<expr> : <dec_num> | <var> | <binary_expr>
<binary_expr> : <left_expr> <operator> <right_expr>
<left_expr> : <dec_num> | <var>
<right_expr> : <dec_num> | <var>
<operator> : + | *



Expressions: ME
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<expr> : <dec_num> | <var> | <binary_expr>
<binary_expr> : <left_expr> <operator> <right_expr>
<left_expr> : <dec_num> | <var>
<right_expr> : <dec_num> | <var>
<operator> : + | *

ME(<expr>, s) = 
  case <expr> of
    <dec_num> => Mdec(<dec_num>)
    <var> => if (VARMAP(<var>,s) == undef) then error else VARMAP(<var>,s)
    <binary_expr> => 
      if (ME(<binary_expr>.<left_expr>,s)  == error OR
          ME(<binary_expr>.<right_expr>,s) == error)
      then error
      elif (<binary_expr>.<operator> == '+')
      then ME(<binary_expr>.<left_expr>,s) + ME(<binary_expr>.<right_expr>,s)
      else ME(<binary_expr>.<left_expr>,s) * ME(<binary_expr>.<right_expr>,s)



Expressions: ME Example
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ME(x + 24,s)
= ME(x,s) + ME(24,s)
= VARMAP(x,s) + Mdec(24)
= 36 + 10*Mdec(2) + 4
= 36 + 10*2 + 4
= 60

Given state s = { (x,36), (y,20), (z,15) }

ME(x + u,s)
= ME(x,s) + ME(u,s)
= VARMAP(x,s) + ME(u,s) + 4
= 36 + ME(u,s) + 4
= error

ME(15 + 24,s)
= ME(15) + ME(24)
= Mdec(15) + Mdec(24)
= 10*Mdec(1)+5 + 10*Mdec(2)+4
= 10*1+5 + 10*2+4
= 39



Assignment Statement: MA
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MA(x = E, s) = 
  if ME(E, s) == error
  then error
  else s′ = {<i1, v1′>, ..., <in, vn′>}, 
       where for j = 1, …, n 
             if (ij == x) // note that we are comparing names of variables here
             then vj′ = ME(E, s)
             else vj′ = VARMAP(ij, s)

Note: This mapping for assignment statement does not return any mathematical 
object, but simply returns a new state sʹ of the program.



Assignment Statement: MA Example
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Given state s = { (x,36), (y,20), (z,15) }

To compute MA(x = x + 24, s)

first calculate meaning of RHS of assignment statement
ME(x + 24,s)
= ME(x,s) + ME(24,s)
= VARMAP(x,s) + Mdec(24)
= VARMAP(x,s) + 10*Mdec(2) + 4
= 36 + 10*2 + 4
= 60

Then, return the state s’ = { (x,60), (y,20), (z,15) }



While Loop: ML

35

ML(while B do L, s) = 
  if MB(B, s) == error then error
  elif MB(B, s) == false then s
  elif MSL(L, s) == error then error
  else ML(while B do L, MSL(L, s))

Note:  

MSL maps statement lists to states.  

MB maps Boolean expressions to Boolean values (or error).  

We assume that these two mappings are defined elsewhere.



While Loop: ML Example
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MB((count > 0),s1) = TRUE

ML(while (count > 0) {x = x + 24; count = count - 1},s1) 
= ML(while (count > 0) {x = x + 24; count = count - 1},s2)

where, s2 = MSL({x = x + 24; count = count - 1},s1) 
          = { (x,60), (count,0), (z,15) }

MB((count > 0),s2) = FALSE 

ML(while (count > 0) {x = x + 24; count = count - 1},s2) 
= s2

Final answer: s2 = { (x,60), (count,0), (z,15) }

Consider the statement: 
while (count > 0) {x = x + 24; count = count - 1}
and the initial state s1 = { (x,36), (count,1), (z,15) }


