
Describing Syntax and Semantics

Programming Languages

Part I

1

of



Programming Language Description
Description must 

• be concise and understandable 

• be useful to both programmers and language implementors 

•  cover both  

• syntax (forms of expressions, statements, and program units) and 

• semantics (meanings of expressions, statements, and program units 

Example: Java while-statement 

Syntax: while (boolean_expr) statement

Semantics: if boolean_expr is true then statement is executed and control 
returns to the expression to repeat the process; if boolean_expr is false then 
control is passed on to the statement following the while-statement.

2



Lexemes and Tokens
Lowest-level  syntactic units are called lexemes. Lexemes include identifiers, 
literals, operators, special keywords etc. 

A token is a category of the lexemes (i.e. similar lexemes belong to a token) 

Example: Java statement: index = 2 * count + 17;

Lexeme Token
index IDENTIFIER

= EQUALS
2 NUMBER
* MUL

count IDENTIFIER
+ PLUS
17 NUMBER
; SEMI

IDENTIFIER tokens: index, count

NUMBER tokens: 2, 17

remaining 4 lexemes (=, *, +, ;) are lone  

examples of their corresponding token!

3



Lexemes and Tokens: Another Example
Example: SQL statement
select sno, sname

from   suppliers

where  sname = ’Smith’

Lexeme Token
select SELECT
sno IDENTIFIER
, COMMA
sname IDENTIFIER
from FROM
suppliers IDENTIFIER
where WHERE
sname IDENTIFIER
= EQUALS
‘Smith’ SLITERAL

IDENTIFIER tokens: sno, same, suppliers

SLITERAL tokens: ‘Smith’

remaining lexemes (select, from, where, ,, =)  

are lone examples of their corresponding token!

4



Lexemes and Tokens: A third Example
Example: WAE expressions
{with {{x 5} {y 2}} {+ x y}};

Lexeme Token
{ LBRACE
with WITH
{ LBRACE
{ LBRACE
x ID
5 NUMBER
} RBRACE
{ LBRACE
y ID
2 NUMBER

Lexeme Token
} RBRACE
} RBRACE
{ LBRACE
+ PLUS
x ID
y ID
} RBRACE
} RBRACE
; SEMI

TOKENS: 

LBRACE 
RBRACE 
PLUS 
MINUS 
TIMES 
DIV 
ID 
WITH 
IF 
NUMBER 
SEMI

5



Lexical Analyzer

A lexical analyzer is a program that reads an input program/expression/query and 
extracts each lexeme from it (classifying each as one of the tokens). 

Two ways to write this lexical analyzer program: 

1. Write it from scratch! i.e. choose your favorite programming language (python!) 
and write a program in python that reads input string (which contain the input 
program, expression, or query) and extracts the lexemes. 

2. Use a code-generator (Lex, Yacc, PLY, ANTLR, Bison, …) that reads a high-level 
specification (in the form of regular expressions) of all tokens and generates a 
lexical analyzer program for you! 

3. We will see how to write the lexical analyzer from scratch later. 

4. Now, we will learn how to do it using PLY: http://www.dabeaz.com/ply/
6



Regular Expressions in Python
https://docs.python.org/3/library/re.html
https://www.w3schools.com/python/python_regex.asp

Meta Characters used in Python regular expressions:

Meta Description Examples
[] A set of characters [a-z], [0-9], [xyz012]
. Any one character (except newline) he..o, 
^ starts with ^hello
$ ends with world$
* zero or more occurrences [a-z]*
+ one or more occurrences [a-zA-Z]+
? one or zero occurrence [-+]?
{} specify number of occurrences [0-9]{5}
| either or [a-z]+ | [A-Z]+
() capture and group ([0-9]{5}) use \1 \2 etc. to refer
\ begins special sequence; also used to escape meta characters \d, \w, etc. (see documentation)

7



PLY (Python Lex/Yacc): WAE Lexer

import ply.lex as lex

reserved = { 'with': 'WITH', 'if': 'IF' }

tokens = 

[‘NUMBER’,’ID','LBRACE','RBRACE','SEMI','PLUS',\

 'MINUS','TIMES','DIV'] + list(reserved.values())

t_LBRACE = r’\{'

t_RBRACE = r’\}'

t_SEMI = r';'

t_WITH = r'[wW][iI][tT][hH]'

t_IF = r'[iI][fF]'

t_PLUS = r'\+'

t_MINUS = r'-'

t_TIMES = r'\*'

t_DIV = r'/'

def t_NUMBER(t):

  r'[-+]?[0-9]+(\.([0-9]+)?)?'

  t.value = float(t.value)

  t.type = 'NUMBER'

  return t

def t_ID(t):

  r'[a-zA-Z][_a-zA-Z0-9]*'

  t.type = reserved.get(t.value.lower(),'ID')

  return t

# Ignored characters

t_ignore = " \r\n\t"

t_ignore_COMMENT = r'\#.*'

def t_error(t):

  print("Illegal character '%s'" % t.value[0])

  t.lexer.skip(1)

lexer = lex.lex()

pip install ply 

or 

pip3 install ply
8



WAE Lexer continued

# Test it out
data = '''
{with {{x 5} {y 2}} {+ x y}};
'''

# Give the lexer some input
print("Tokenizing: ",data)
lexer.input(data)

# Tokenize
while True:
    tok = lexer.token()
    if not tok: 
        break      # No more input
    print(tok)

•The lexer object has just two methods: 
lexer.input(data) and lexer.token() 

•Usually, the Lexical Analyzer is used in 
tandem with a Parser (the parser calls 
lexer.token()) .  

•So, the code on this page is written just to 
debug the Lexical Analyzer.  

•Once satisfied we can/should comment out 
this code.

9



WAE Lexer continued

{with {{x 5} {y 2}} {+ x y}};

The PLY Lexer program we wrote will generate the following sequence of pairs of token 
types and their values: 

(‘LBRACE’,’{‘), (‘WITH’,’with’), (‘LBRACE’,’{‘), (‘LBRACE’,’{‘), (‘ID’,’x’),

(‘NUMBER’,’5’), (‘RBRACE’,’}’), (‘LBRACE’,’{‘), (‘ID’,’y’), (‘NUMBER’,’2’), 

(‘RBRACE’,’{‘), (‘RBRACE’,’}’), (‘LBRACE’,’{’), (‘PLUS’,’+’), (‘ID’,’x’) 

(‘ID’,’y’), (‘RBRACE’,’}’), (‘RBRACE’,’}’), (‘SEMI’,’;’)

Let us see this program (WAELexer.py) in action!
10



Language Generators and Recognizers

Now that we know how to describe tokens of a program, let us learn how to describe a 
“valid” sequence of tokens that constitutes a program. A valid program is referred to 
as a sentence in formal language theory. 

Two ways to describe the syntax: 

(1) Language Generator: a mechanism that can be used to generate sentences of a 
language. This is usually referred to as a Context-Free-Grammar (CFG). Easier 
to understand. 

(2) Language Recognizer: a mechanism that can be used to verify if a given string, p, 
of characters (grouped in a sequence of tokens) belongs to a language L. The 
syntax analyzer in a compiler is a language recognizer. 

(3) There is a close connection between a language generator and a language 
recognizer.

11



Chomsky Hierarchy and Backus-Naur Form 

• Chomsky, a noted Linguist, defined a hierarchy of language generator mechanisms 
or grammars for four different classes of languages. Two of them are used to 
describe the syntax of programming languages: 

• Regular Grammars: describe the tokens and are equivalent to regular 
expressions. 

• Context-free Grammars: describe the syntax of programming languages 

• John Backus invented a similar mechanism, which was extended by Peter Naur later 
and this mechanism is referred to as the Backus-Naur Form (BNF) 

• Both these mechanisms are similar and we may use CFG or BNF to refer to them 
interchangeably.

12



Fundamentals of Context Free Grammars
CFGs are a meta-language to describe another language. They are meta-languages for programming 
languages! 

A context-free grammar G has 4 components (N,T,P,S): 

1) N, a set of non-terminal symbols or just called non-terminals; these denote abstractions that stand 
for syntactic constructs in the programming language. 

2) T, a set of terminal symbols or just called terminals; these denote the tokens of the programming 
language 

3) P, a set of production rules of the form  

X    

where X is a non-terminal and  (definition of X) is a string made up of terminals or non-terminals. 
The production rules define the “valid” sequence of tokens for the programming language. 

4)  S, a non-terminal, that is designated as the start symbol; this denotes the highest level abstraction 
standing for all possible programs in the programming language.

→ α

α

13



CFGs: Examples of Production rules

(1) A Java assignment statement may be represented by the abstraction assign. The definition of 
assign may be given by the production rule 
assign  VAR EQUALS expression

(2) A Java if statement may be represented by the abstraction ifstmt and the following production 
rules: 
ifstmt  IF LPAREN logic_expr RPAREN stmt

ifstmt  IF LPAREN logic_expr RPAREN stmt ELSE stmt

These two rules have the same LHS; They can be combined into one rule with “or” on the RHS: 
ifstmt  IF LPAREN logic_expr RPAREN stmt |

          IF LPAREN logic_expr RPAREN stmt ELSE stmt

In the above examples, we have to introduce production rules that define the various abstractions used 
such as expression, logic_expr, and stmt

→

→
→

→

Note: We will use lower-case for non-terminals and upper-case for terminals.

14



CFGs: Examples of Production rules
(3) A list of identifiers in Java may be represented by the abstraction ident_list. The definition of 

ident_list can be given by the following recursive production rules: 
ident_list  IDENTIFIER

ident_list  ident_list COMMA IDENTIFIER

Notice that the second rule is recursive because the non-terminal ident_list on the LHS also appears in 
the RHS.  

It is time to learn how these production rules are to be used! The production rules are a type of 
“replacement” or “rewrite” rules, where the LHS is replaced by the RHS. Consider the following 
replacements/rewrites starting with ident_list: 

ident_list 

 ident_list COMMA IDENTIFIER

 ident_list COMMA IDENTIFIER COMMA IDENTIFIER

 ident_list COMMA IDENTIFIER COMMA IDENTIFIER COMMA IDENTIFIER

 IDENTIFIER COMMA IDENTIFIER COMMA IDENTIFIER COMMA IDENTIFIER

substituting these token types by their values, we may get: x, y, z, u

→
→

⇒
⇒
⇒
⇒

IMPORTANT PATTERN!

15



WAE PLY Grammar

PRODUCTION RULES (P)
waeStart : wae SEMI

wae : NUMBER
wae : ID
wae : LBRACE PLUS wae wae RBRACE
wae : LBRACE MINUS wae wae RBRACE
wae : LBRACE TIMES wae wae RBRACE
wae : LBRACE DIV wae wae RBRACE
wae : LBRACE IF wae wae wae RBRACE
wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE

alist : LBRACE ID wae RBRACE
alist : LBRACE ID wae RBRACE alist

Note: In PLY, we use : instead of →

TERMINALS (T)

LBRACE
RBRACE
PLUS
MINUS
TIMES
DIV
ID
WITH
IF
NUMBER
SEMI

wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE

      { with { {x 5} {y 2} } {+ x y} }

wae : LBRACE PLUS wae wae RBRACE

              { + x y }

NON-TERMINALS (N)

waeStart
wae
alist

16



Grammars and Derivations

The sentences of the language are generated through a sequence of applications of the production 
rules, starting with the start symbol. This sequence of rule applications is called a derivation. In a 
derivation, each successive string is derived from the previous string by replacing one of the 
nonterminals with one of that nonterminal’s definitions. 

Consider the string: {+ x y};

Here is a derivation for this string (starting from waeStart we are able to derive {+ x y};) 
      waeStart
 wae ;
 { + wae wae } ;
 { + x wae } ;
 { + x y } ;

We have highlighted in red the non-terminal that is being replaced/rewritten. Since we have a 
successful derivation for the string, {+ x y}; we say that the string, {+ x y}; is a “valid” WAE 
expression.

⇒
⇒
⇒
⇒

using rule waeStart : wae SEMI
using rule wae : LBRACE PLUS wae wae RBRACE
using rule wae : ID
using rule wae : ID

17



Another Derivation Example

Consider the string: {WITH {{x 5} {y 2}} {+ x y}};
Here is a derivation for this string: 

waeStart 
 wae ;                            
 { WITH { alist } wae } ;                                         
 { WITH { { x wae } alist } wae }; 
 { WITH { { x 5 } alist } wae }; 
 { WITH { { x 5 } { y wae } } wae }; 
 { WITH { { x 5 } { y 2 } } wae }; 
 { WITH { { x 5 } { y 2 } } {+ wae wae} }; 
 { WITH { { x 5 } { y 2 } } {+ x wae} }; 
 { WITH { { x 5 } { y 2 } } {+ x y} };

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒

waeStart : wae SEMI

wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE

alist : LBRACE ID wae RBRACE alist

wae : NUMBER

alist : LBRACE ID wae RBRACE

wae : NUMBER 

wae : LBRACE PLUS wae wae RBRACE

wae : ID

wae : ID

Production Rule Used 

18



Derivations continued

• Each string in a derivation, including the start symbol, is referred to as a sentential form.  

• A derivation continues until the sentential form does not contain any non-terminals. 

• A leftmost derivation is one in which the replaced nonterminal is always the leftmost 
nonterminal.  

• In addition to leftmost, a derivation may be rightmost or in an order that is neither leftmost 
nor rightmost.  

• Derivation order has no effect on the language generated by a grammar.   

• By choosing alternative rules with which to replace non-terminals in the derivation, different 
sentences in the language can be generated.  

• By exhaustively choosing all combinations of choices, the entire language can be generated.

19



Another Grammar Example

<assign> : <id> = <expr>

<expr> : <id> + <expr>

<expr> : <id> * <expr>

<expr> : ( <expr> )

<expr> : <id>

<id> : A

<id> : B

<id> : C

PRODUCTION RULES: A leftmost derivation for A = B * ( A + C )

<assign>

 <id> = <expr>

 A = <expr>

 A = <id> * <expr>

 A = B * <expr>

 A = B * ( <expr> )

 A = B * ( <id> + <expr> )

 A = B * ( A + <expr> )

 A = B * ( A + <id> )

 A = B * ( A + C )

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒

20



waeStart
 wae ;
 { + wae wae } ;
 { + x wae } ;
 { + x y } ;

⇒
⇒
⇒
⇒

Parse Tree

• A derivation can be represented graphically in the form of a parse tree.  

• The root node is the start symbol of the grammar.  

• Each step of the derivation expands a non-terminal node by creating one child node for each 
symbol in the RHS of the production rule used in the derivation. 

• Every internal node is labeled with a non-terminal and every leaf is labeled with a terminal. 

• A pre-order traversal of just the leaves is called the yield and should equal the terminal string 
whose derivation the parse tree represents.

21



waeStart 
 wae ;                            
 { WITH { alist } wae } ;                                         
 { WITH { { x wae } alist } wae }; 
 { WITH { { x 5 } alist } wae }; 
 { WITH { { x 5 } { y wae } } wae }; 
 { WITH { { x 5 } { y 2 } } wae }; 
 { WITH { { x 5 } { y 2 } } {+ wae wae} }; 
 { WITH { { x 5 } { y 2 } } {+ x wae} }; 
 { WITH { { x 5 } { y 2 } } {+ x y} };

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒

Parse Tree: Another Example 

22



Parse Tree: A third example 

<assign>

 <id> = <expr>

 A = <expr>

 A = <id> * <expr>

 A = B * <expr>

 A = B * ( <expr> )

 A = B * ( <id> + <expr> )

 A = B * ( A + <expr> )

 A = B * ( A + <id> )

 A = B * ( A + C )

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒

23



PLY Parser

• In addition to the Lexer (ply.lex) module, PLY also provides a Parser module (ply.yacc) 

• The Parser module requires a CFG specification of the language 

• PLY automatically generates a Parser program from the CFG. 

• The Parser program calls the PLY Lexer object (created by the Lexer module) to read tokens 
from the input string.  

• The Parser program verifies that the input string can be derived from the grammar by trying 
to construct a parse tree.  

• PLY also provides the ability to evaluate “attribute” values for non-terminals in the parse tree. 
This ability can be used by the programmer to construct a data structure that stores the 
essential parts of the input string. This data structure is sometimes called an abstract syntax 
tree

24



PLY Parser continued
• Each grammar rule is defined by a Python function where the docstring to that function 

contains the grammar rule. 
• The Python function name must begin with a p_ and it is typical to include the non-terminal 

on the LHS of the grammar rule as part of the function name. 
• Here is one such function for the WAE Grammar:

def p_wae_8(p):
  'wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE’
  # ^       ^     ^    ^     ^      ^     ^     ^
  #p[0]    p[1]  p[2] p[3]  p[4]   p[5]  p[6]  p[7]
  p[0] = ['with',p[4],p[6]]

• As can be observed, the function is named p_wae_8. The 8 is used to indicate that this is 
the 8th grammar rule with wae on the LHS.  

• The second line is the docstring containing the grammar rule.
• The function has one parameter, p, which is a list of “values” of each of the symbols in the 

grammar rule. p[0] holds the value of the LHS non-terminal and p[1], p[2], etc. hold the values 
of the symbols of the RHS, as shown in the two comment lines.

25



PLY Parser continued
def p_wae_8(p):
  'wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE’
  # ^       ^     ^    ^     ^      ^     ^     ^
  #p[0]    p[1]  p[2] p[3]  p[4]   p[5]  p[6]  p[7]
  p[0] = ['with',p[4],p[6]]

• For RHS tokens or terminals, the "value" of the 
corresponding p[i] is the same as the t.value 
attribute assigned in the lexer module.  

• For RHS non-terminals, the value of the corresponding 
p[i] is determined by whatever is placed in p[0] in the 
function for the rule that is used in the derivation to 
replace this non-terminal. This value can be anything, 
decided by the programmer.

p[i] value of p[i]
p[1] “{“
p[2] “with”
p[3] “{“
p[4] value assigned to p[0] in one of the alist-functions
p[5] “}”
p[6] value assigned to p[0] in one of the wae-functions 
p[7] “}”

26



WAE Parser

import ply.yacc as yacc
from WAELexer import tokens

def p_waeStart(p):
  'waeStart : wae SEMI'
  p[0] = p[1]

def p_wae_1(p):
  'wae : NUMBER' 
  p[0] = ['num',p[1]]

def p_wae_2(p):
  'wae : ID' 
  p[0] = ['id',p[1]]

def p_wae_3(p):
  'wae : LBRACE PLUS wae wae RBRACE' 
  p[0] = ['+',p[3],p[4]]

def p_wae_4(p):
  'wae : LBRACE MINUS wae wae RBRACE' 
  p[0] = ['-',p[3],p[4]]

def p_wae_5(p):
  'wae : LBRACE TIMES wae wae RBRACE' 
  p[0] = ['*',p[3],p[4]]

def p_wae_6(p):
  'wae : LBRACE DIV wae wae RBRACE' 
  p[0] = ['/',p[3],p[4]]

def p_wae_7(p):
  'wae : LBRACE IF wae wae wae RBRACE'
  p[0] = ['if',p[3],p[4],p[5]]

def p_wae_8(p):
  'wae : LBRACE WITH LBRACE alist RBRACE wae RBRACE'
  p[0] = ['with',p[4],p[6]]

WAEParser.py

27



WAE Parser (continued)

def p_alist_1(p):
  'alist : LBRACE ID wae RBRACE'
  p[0] = [[p[2],p[3]]]

def p_alist_2(p):
  'alist : LBRACE ID wae RBRACE alist'
  p[0] = [[p[2],p[3]]] + p[5]

def p_error(p):
  print("Syntax error in input!")

parser = yacc.yacc()

from WAEParser import parser

def read_input():
  result = ''
  while True:
    data = input('WAE: ').strip() 
    if ';' in data:
      i = data.index(';')
      result += data[0:i+1]
      break
    else:
      result += data + ' '
  return result

def main():
  while True:
    data = read_input() 
    if data == 'exit;':
      break
    try:
      tree = parser.parse(data)
    except Exception as inst:
      print(inst.args[0])
      continue
    print(tree)

WAE.py (main program)

WAEParser.py (continued)

28



waeStart : wae SEMI
wae : ID
wae : LBRACE PLUS wae wae RBRACE

waeStart

wae ;

}{ + wae wae

x y

[‘id’,’x’] [‘id’,’y’]

[‘+’,[‘id’,’x’],[‘id’,’y’]]

[‘+’,[‘id’,’x’],[‘id’,’y’]]

wae : ID wae : ID

wae : LBRACE PLUS wae wae RBRACE

waeStart : wae SEMI

waeStart
 wae ;
 { + wae wae } ;
 { + x wae } ;
 { + x y } ;

⇒
⇒
⇒
⇒

Derivation

{ + x y } ;

Grammar (subset)

Parse Tree

Input String

def p_waeStart(p):
  'waeStart : wae SEMI'
  p[0] = p[1]

def p_wae_2(p):
  'wae : ID' 
  p[0] = [‘id’,p[1]]

def p_wae_3(p):
  'wae : LBRACE PLUS wae wae RBRACE' 
  p[0] = ['+',p[3],p[4]]

PLY functions (subset)

29



PLY: In a nutshell

Parser 
(parser object)

Lexer 
(lexer object)

Language 
Specification 

(CFG) 
WAEParser.py

Token Specification 
(Reg Exp) 

WAELexer.py

PLY Main Program 
WAE.py

30

Output

Input {+ 3 4}

7


