CS 2336
 Discrete Mathematics

Lecture 11
Sets, Functions, and Relations: Part III

Outline

- What is a Relation ?
- Types of Binary Relations
- Representing Binary Relations
- Closures

Cartesian Product

- Let A and B be two sets

The cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs

$$
\{(a, b) \mid a \in A \text { and } b \in B\}
$$

- $A=\{1,2,3,4,5,6,7,8,9,10, J, Q, K\}=$ all ranks $B=\{\uparrow, \downarrow, \downarrow, \&\}=$ all suits
$\rightarrow \mathrm{A} \times \mathrm{B}=$ all 52 cards in a deck

$$
=\{(1, \uparrow),(2, x),(3, x), \ldots,(J, \infty),(Q, \infty),(K, \infty)\}
$$

Cartesian Product

- Let $A_{1}, A_{2}, \ldots, A_{k}$ be k sets

The cartesian product of $A_{1}, A_{2}, \ldots, A_{k}$, denoted by $A_{1} \times A_{2} \times \ldots \times A_{k}$, is the set of all ordered pairs $\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid a_{j} \in A_{j}\right.$ for all $\left.j=1,2, \ldots, k\right\}$

- Let $A_{j}=$ the set \mathfrak{R} of real numbers, for all j
$\rightarrow A_{1} \times A_{2} \times A_{3}=$ the 3-d Euclidean space \mathfrak{R}^{3}

Relation

A binary relation from A to B is a subset of the cartesian product $\mathrm{A} \times \mathrm{B}$

- Example:
$A=\{1,2,3,4,5,6,7,8,9,10, J, Q, K\}$
$B=\{\uparrow, \downarrow, \stackrel{\star}{\infty}\}$
Spades $=\{(1, \uparrow),(2, \uparrow),(3, \uparrow), \ldots,(Q, \uparrow),(K, \uparrow)\}$
\rightarrow Spades is a binary relation

Relation

A k-ary relation is a subset of a cartesian of k sets

- Example:
$L=\{(x, y, z) \mid 2 x+3 y+z=0$, and $x, y, z \in \mathfrak{R}\}$
\Rightarrow the line L is a ternary relation of the space \mathfrak{R}^{3}

Binary Relation

- In the remaining of this lecture, we focus on a special type of relations :
the binary relation from a set A to A
- Such a relation is called a binary relation on A
- Example : $A=$ the set of integers

$$
R=\{(a, b) \mid a-b \geq 10\}
$$

Types of Binary Relations

A binary relation R on A is said to be reflexive if $(a, a) \in R$ for every $a \in A$

- Which of the following relations are reflexive ?
- $R=\{(a, b) \mid a-b \geq 10, a, b$ are integers $\}$
- $S=\{(a, b) \mid a \leq b, a, b$ are integers $\}$
- $T=\{(a, b) \mid a<b, a, b$ are integers $\}$
- $U=\{(x, y) \mid x$ and y are on the same weekday, x, y are days in April 2013 \}

Types of Binary Relations

A binary relation R on A is said to be symmetric if $(a, b) \in R$ implies $(b, a) \in R$

- Which of the following relations are symmetric ?
- $R=\{(a, b) \mid a-b \geq 10, a, b$ are integers $\}$
- $S=\{(a, b) \mid a \leq b, a, b$ are integers $\}$
- $T=\{(a, b) \mid a<b, a, b$ are integers $\}$
- $U=\{(x, y) \mid x$ and y are on the same weekday, x, y are days in April 2013 \}

Types of Binary Relations

A binary relation R on A is said to be antisymmetric if $(a, b) \in R$ implies $(b, a) \notin R$ unless $a=b$

- Which of the following are antisymmetric ?
- $R=\{(a, b) \mid a-b \geq 10, a, b$ are integers $\}$
- $S=\{(a, b) \mid a \leq b, a, b$ are integers $\}$
- $T=\{(a, b) \mid a<b, a, b$ are integers $\}$
- $U=\{(x, y) \mid x$ and y are on the same weekday, x, y are days in April 2013 \}

Types of Binary Relations

A binary relation R on A is said to be transitive if $(a, b),(b, c) \in R$ implies $(a, c) \in R$

- Which of the following are transitive ?
- $R=\{(a, b) \mid a-b \geq 10, a, b$ are integers $\}$
- $S=\{(a, b) \mid a \leq b, a, b$ are integers $\}$
- $T=\{(a, b) \mid a<b, a, b$ are integers $\}$
- $U=\{(x, y) \mid x$ and y are on the same weekday, x, y are days in April 2013 \}

Representing Binary Relations

- Let A be a finite set
- The binary relation on A can be convenient represented in two different ways :
- Method 1: Matrix Form

Representing Binary Relations

- Method 2: Directed Graph
- $A=\{1,2,3,4\}$

$$
R=\{(1,1),(1,2),(2,3),(2,4),(3,4),(4,2)\}
$$

Closures

- Given a binary relation R, we may obtain a new relation R^{\prime} by adding items into R, such that R^{\prime} will have certain property
- Example :
$R=\{(1,1),(1,2),(2,3),(2,4),(3,4),(4,2)\}$
If we add $(2,2),(3,3)$, and $(4,4)$ into R, the resulting relation will be reflexive

Closures

- Let R be a binary relation

The smallest possible relation R^{\prime} that contains R as a subset, such that R^{\prime} has a property P, is the closure of R with respect to P

R

Reflexive closure of R

Closures

- What is the transitive closure of

$$
R=\{(1,1),(1,2),(2,3),(2,4),(3,4),(4,2)\} ?
$$

Transitive closure of R

Finding Transitive Closure

- Getting the transitive closure seems difficult Is there a systematic way to get this ?
- Consider the directed graph representation
$\rightarrow R=$ all pairs of vertices where one can reach the other in 1 step
- We can (not easily) show that for vertices x and y,
x can reach y in the graph
$\Leftrightarrow(x, y)$ is in the transitive closure of R

Finding Transitive Closure

- Let $R^{k}=$ all pairs of vertices where one can reach the other in exactly k steps
$\rightarrow R=R^{1}$
- We can repeatedly obtain R^{2}, R^{3}, and so on, until we cannot add any new edges
\rightarrow the resulting graph corresponds to the transitive closure of R

Finding Transitive Closure

Transitive closure of R

Finding Transitive Closure

- Apart from the previous method, there are faster ways to compute the transitive closure
- If the matrix form is given, and $|A|=n$ 1. Recursive doubling algorithm: $O\left(n^{3} \log n\right)$ time

2. Floyd-Warshall algorithm: $O\left(n^{3}\right)$ time
\rightarrow Code is super simple : Only 3 for loops !
