CS 2336 Discrete Mathematics

Lecture 11

Sets, Functions, and Relations: Part III

Outline

- What is a Relation ?
- Types of Binary Relations
- Representing Binary Relations
- Closures

Cartesian Product

• Let A and B be two sets

The cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs $\{ (a, b) \mid a \in A \text{ and } b \in B \}$

- A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K } = all ranks
 B = { ♠, ♥, ♦, ♣ } = all suits
 - \rightarrow A × B = all 52 cards in a deck

= { (1, ♠), (2, ♠), (3, ♠), ..., (J, ♣), (Q, ♣), (K, ♣) }

Cartesian Product

The cartesian product of $A_1, A_2, ..., A_k$, denoted by $A_1 \times A_2 \times ... \times A_k$, is the set of all ordered pairs { $(a_1, a_2, ..., a_k) | a_j \in A_j$ for all j = 1, 2, ..., k }

Let A_j = the set ℜ of real numbers, for all j
 A₁ × A₂ × A₃ = the 3-d Euclidean space ℜ³

Relation

A binary relation from A to B is a subset of the cartesian product $A \times B$

- Example:
 - A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K }
 - B = { ♠, ♥, ♦, ♣ }

Spades = { (1, ♠), (2, ♠), (3, ♠), ..., (Q, ♠), (K, ♠) }

→ Spades is a binary relation

Relation

A k-ary relation is a subset of a cartesian of k sets

- Example:
 - L = { (x, y, z) | 2x + 3y + z = 0, and x, y, $z \in \Re$ }
 - \rightarrow the line L is a ternary relation of the space \Re^3

Binary Relation

• In the remaining of this lecture, we focus on a special type of relations :

the binary relation from a set A to A

- Such a relation is called a binary relation on A
- Example : A = the set of integers

$$R = \{ (a, b) | a - b \ge 10 \}$$

A binary relation R on A is said to be reflexive if (a, a) \in R for every a \in A

- Which of the following relations are reflexive ?
 - $R = \{ (a, b) \mid a b \ge 10, a, b are integers \}$
 - $S = \{ (a, b) \mid a \leq b, a, b are integers \}$
 - T = { (a, b) | a < b, a, b are integers }
 - U = { (x, y) | x and y are on the same weekday,
 x, y are days in April 2013 }

A binary relation R on A is said to be symmetric if $(a, b) \in R$ implies $(b, a) \in R$

- Which of the following relations are symmetric ?
 - R = { (a, b) | $a b \ge 10$, a, b are integers }
 - $S = \{ (a, b) \mid a \leq b, a, b are integers \}$
 - T = { (a, b) | a < b, a, b are integers }
 - U = { (x, y) | x and y are on the same weekday,
 x, y are days in April 2013 }

A binary relation R on A is said to be antisymmetric if $(a, b) \in R$ implies $(b, a) \notin R$ unless a = b

- Which of the following are antisymmetric ?
 - $R = \{ (a, b) \mid a b \ge 10, a, b are integers \}$
 - $S = \{ (a, b) \mid a \leq b, a, b are integers \}$
 - T = { (a, b) | a < b, a, b are integers }
 - U = { (x, y) | x and y are on the same weekday,
 x, y are days in April 2013 }

A binary relation R on A is said to be transitive if $(a, b), (b, c) \in R$ implies $(a, c) \in R$

- Which of the following are transitive ?
 - R = { (a, b) | $a b \ge 10$, a, b are integers }
 - $S = \{ (a, b) \mid a \leq b, a, b are integers \}$
 - T = { (a, b) | a < b, a, b are integers }
 - U = { (x, y) | x and y are on the same weekday,
 x, y are days in April 2013 }

Representing Binary Relations

- Let A be a finite set
- The binary relation on A can be convenient represented in two different ways :
- Method 1: Matrix Form
 A = { 1, 2, 3, 4 }
 R = { (1,1), (1,2), (2,3), (2,4), (3,4), (4,2) }

Representing Binary Relations

- Method 2: Directed Graph
- A = { 1, 2, 3, 4 }

 $R = \{ (1,1), (1,2), (2,3), (2,4), (3,4), (4,2) \}$

Closures

 Given a binary relation R, we may obtain a new relation R' by adding items into R, such that R' will have certain property

• Example :

R = { (1,1), (1,2), (2,3), (2,4), (3,4), (4,2) } If we add (2,2), (3,3), and (4,4) into R, the resulting relation will be reflexive

Closures

• Let R be a binary relation

The smallest possible relation R' that contains R as a subset, such that R' has a property P, is the closure of R with respect to P

Reflexive closure of R

Closures

What is the transitive closure of
 R = { (1,1), (1,2), (2,3), (2,4), (3,4), (4,2) }?

R

Transitive closure of R

Finding Transitive Closure

- Getting the transitive closure seems difficult Is there a systematic way to get this ?
- Consider the directed graph representation
 - → R = all pairs of vertices where one can reach the other in 1 step
- We can (not easily) show that for vertices x and y,

x can reach y in the graph

⇔ (x, y) is in the transitive closure of R

Finding Transitive Closure

 Let R^k = all pairs of vertices where one can reach the other in exactly k steps

 \rightarrow R = R¹

- We can repeatedly obtain R², R³, and so on, until we cannot add any new edges
 - ➔ the resulting graph corresponds to the transitive closure of R

Transitive closure of R

Finding Transitive Closure

- Apart from the previous method, there are faster ways to compute the transitive closure
- If the matrix form is given, and |A|= n
 - 1. Recursive doubling algorithm : O(n³ log n) time
 - 2. Floyd-Warshall algorithm : O(n³) time
 - \rightarrow Code is super simple : Only 3 for loops !