
 1

CSc 4330 Programming Language Concepts
Midterm Exam, Summer 2020
6 July 2020; SUBMISSION OPEN TILL 1.30 PM om July 6th (MONDAY)

Handin on tinman.cs.gsu.edu under assignment mt with the following command:

sudo handin4330 mt mt.txt figures.pdf
or
sudo handin4330 mt mt.pdf figures.pdf

Submit one or two files: mt.txt or mt.pdf containing your answers and figures.pdf containing
parse trees for problems 1, 5, and 8. Of course if you can generate one pdf containing all
answers then submit just mt.pdf

HONOR CODE STATEMENT (Please include this in your submitted file)

I truthfully declare that the work submitted for this midterm exam is solely my work and was
not created in collaboration with anyone else in the class or elsewhere.

PUT YOUR NAME HERE

GOOD LUCK!

 2

Problem 1 (15 Points) DERIVATION AND PARSE TREE

Consider the following grammar that generates prefix expressions with operands x and y and
binary operators +, -, and *:

E à + E E
E à - E E
E à * E E
E à x
E à y

Show the rightmost derivation for +*-xyxy

Also draw the parse tree.

SOLUTION:

rightmost derivation
E => + E E
 => + E y
 => + * E E y
 => + * E x y
 => + * - E E x y
 => + * - E y x y
 => + * - x y x y

 3

Problem 2 (15 Points) GRAMMAR

Write a context-free grammar for the language of context-free-grammars. A context-free
grammar is a list of production rules. Each production rule starts with a non-terminal followed by
a COLON followed by a list, possibly empty, of terminals or non-terminals. For example, the
following is an example of a context-free grammar:

atom : NAME LPAREN args RPAREN
args : args COMMA arg
args : arg
arg : NUMBER
arg : STRING
arg : NAME

and the following is another example of a context-free grammar:

json : STRING
json : NUMBER
json : LBRACE kvs RBRACE
json : LBRACKET jsons RBRACKET
kvs : STRING COLON json
kvs : STRING COLON json kvs
jsons : json
jsons : json jsons

SOLUTION:

grammar : rules

rules : rule
rules : rules rule

rule : NONTERMINAL COLON symbols

symbols :
symbols : symbols symbol

symbol : NONTERMINAL
symbol : TERMINAL

 4

Problem 3 (15 Points) ATTRIBUTE GRAMMAR
Consider the following grammar from HW3a with the CONS rule added.

lisp : INT
lisp : LPAREN ADD lisp lisp RPAREN
lisp : LPAREN SUB lisp lisp RPAREN
lisp : LPAREN MUL lisp lisp RPAREN
lisp : LPAREN DIV lisp lisp RPAREN
lisp : LPAREN CAR list RPAREN

list : LPAREN CDR list RPAREN
list : LPAREN seq RPAREN
list : LPAREN CONS lisp list RPAREN

seq : lisp
seq : lisp seq

Augment the grammar with attributes, attribute computation functions, and predicates to
REJECT expressions that would result in the possibility of applying CAR or CDR operator on an
EMPTY list. Some examples of rejected expressions are:

(car (cdr (cdr (1 2))))
(cdr (cdr (cdr (cons 1 (cdr (20 30))))))
(cdr (cdr (cdr ((+ 30 40) (car (40 50))))))

SOLUTION:

Introduce synthesized integer-valued attributes list.length and
seq.length.

SYNTAX RULE: lisp : LPAREN CAR list RPAREN
PREDICATE: list[3].length > 0

SYNTAX RULE: list : LPAREN CDR list RPAREN
SEMANTIC RULE: list[0].length = list[3].length - 1
PREDICATE: list[3].length > 0

SYNTAX RULE: list : LPAREN seq RPAREN
SEMANTIC RULE: list.length = seq.length

SYNTAX RULE: list : LPAREN CONS lisp list RPAREN
SEMANTIC RULE: list[0].length = list[4].length + 1

SYNTAX RULE: seq : lisp
SEMANTIC RULE: seq.length = 1

SYNTAX RULE: seq : lisp seq
SEMANTIC RULE: seq[0].length = 1 + seq[2].length

 5

Problem 4 (15 Points) ATTRIBUTE GRAMMAR

Consider the following grammar describing fractional binary numbers:

binary : wbits DOT fbits
wbits : BIT
wbits : wbits BIT
fbits : BIT
fbits : fbits BIT

Assume BIT is a terminal symbol with values ‘0’ or ‘1’. Augment this grammar with attributes,
attribute computation functions, and predicates to REJECT any fractional binary numbers that
have leading or trailing zeros. For example, the strings “00110.1010”, “11.110”, and “001.11” all
should be rejected, but “11.101”, “101.1”, and “111.11” should be accepted.

SOLUTION:

Introduce the following attributes:

synthesized bit-valued attribute wbits.leftmost
synthesized bit-valued attribute fbits.rightmost
intrinsic char-valued attribute BIT.value

SYNTAX RULE: binary : wbits DOT fbits
PREDICATE: (wbits.leftmost != ‘0’) and (fbits.rightmost != ‘0’)

SYNTAX RULE: wbits : BIT
SEMANTIC RULE: wbits.leftmost = BIT.value

SYNTAX RULE: wbits : wbits BIT
SEMANTIC RULE: wbits[0].leftmost = wbits[1].leftmost

SYNTAX RULE: fbits : BIT
SEMANTIC RULE: fbits.rightmost = BIT.value

SYNTAX RULE: fbits : fbits BIT
SEMANTIC RULE: fbits[0].rightmost = BIT.value

 6

Problem 5 (15 Points) ASSOCIATIVITY/PRECEDENCE/RECURSION/PARSE TREE

Consider the following grammar for a language with two infix operators represented by # and $
and the start symbol foo:

foo : bar
foo : bar $ foo
bar : baz
bar : bar # baz
baz : A
baz : B
baz : C

What is the associativity of the # operator (left, right, or neither)? left
What is the associativity of the $ operator (left, right, or neither)? right
Which operator has higher precedence (#, $, or neither)? #
What type of recursion is the grammar is (left recursive, right recursive, both left and right
recursive, or neither left nor right recursive)? Both left and right recursive
Draw a parse tree for the following string: A # B # C $ A $ B

 7

Problem 6 (15 Points) DENOTATIONAL SEMANTICS

Consider the following grammar for fractional binary numbers:

fbin : wbits DOT fbits
wbits : BIT
wbits : wbits BIT
fbits : BIT
fbits : BIT fbits

where BIT is a terminal symbol with values ‘0’ or ‘1’. Write the denotational semantics
function, Mfbin, to define the semantics of fractional binary numbers. For example
Mfbin(’11.01’) = 3.25 and Mfbin(‘101.101’) = 5.625. You may define
intermediate functions to handle the whole and fractional parts of fbin.

SOLUTION:

Mfbin(fbin) = Mw(wbits) + Mf(fbits)

Mw(wbits) = case wbits of
 BIT => if BIT.value == '0' then 0 else 1
 wbits BIT => if BIT.value == '0' then
 2*Mw(wbits)
 else
 2*Mw(wbits)+1

Mf(fbits) = case fbits of
 BIT => if BIT.value == '0' then 0 else 0.5
 BIT fbits => if BIT.value == '0' then
 0.5*Mf(fbits)
 else
 0.5 + 0.5*Mf(fbits)

 8

Problem 7 (15 Points) SHIFT REDUCE PARSER

Consider the following grammar:

Rule 1: X à (X)
Rule 2: X à ()

and the LR Parsing table:

 ACTION GOTO
 () $ X

0 S2 1

1 accept

2 S2 S5 3

3 S4

4 R1 R1 R1

5 R2 R2 R2

Give a rightmost derivation for string (())
Then, show the Stack, Input, and Action after each step of the LR parsing algorithm

SOLUTION:

Rightmost Derivation: X => (X) => (())

STACK INPUT ACTION
0 (())$ Shift 2
0(2 ())$ Shift 2
0(2(2))$ Shift 5
0(2(2)5)$ Reduce 2 (use GOTO[2,X] = 3)
0(2X3)$ Shift 4
0(2X3)4 $ Reduce 1 (use GOTO[0,X] = 1)
0X1 $ Accept

 9

Problem 8 (15 Points) BOTTOM-UP PARSER PHRASES

Consider the following grammar for balanced parentheses:

B : (B)B
B : ε

and consider the following partial right-most derivation for (()())

B => (B)B
 => (B)
 => ((B)B)
 => ((B)(B)B)

Show the partially constructed parse tree and list all phrases. Identify the simple phrases and the
handle.

SOLUTION:

Phrases:

1. ((B)(B)B) Phrase
2. (B)(B)B Phrase
3. ε Simple Phrase
4. (B)B Simple Phrase; Handle

