To solve these problems, you need to understand the following concepts (pages refer to http://tinman.cs.gsu.edu/~raj/4330/slides/10_LambdaCalculus.pdf):
(1) Lambda-term definition (Page 9)
(2) Parentheses convention (Page 10)
(3) Free Variables (Page 12)
(4) alpha-equivalence (Page 13)
(5) substitutions (Page 15)
(6) beta-reductions (Page 16)

Problem 1: Reduce the following expressions to values:
(((lambda x (lambda y (+ x y))) 10) 5)
= ((lambda y (+ 10 y)) 5)
$=(+105)$
$=15$

Problem 2: For each of the following terms, identify the free variables in each term and identify which terms are closed:

```
t4 = ((lambda x x) x)
```

FREE: 3rd x
t7 = ((lambda $y \mathrm{x}) \mathrm{y})$
FREE: $x, 2 n d y$

Problem 3: Using the terms from above, apply the following substitutions and show the resulting expression

```
    t4[x := t3]
= ((lambda x x) x)[x := (lambda x (x x))]
= ((lambda x x)[x := (lambda x (x x))] x[x := (lambda x (x x))])
= ((lambda x x) (lambda x (x x)))
```

Problem 4: Make all parentheses explicit in the following expressions:

```
\lambdax.xz \lambday.xy
(\lambdax.xz \lambday.xy)
(\lambdax.(xz \lambday.xy))
(\lambdax.(xz (\lambday.xy)))
(\lambdax.((xz) (\lambday.xy)))
(\lambdax.((xz) (\lambday.(xy))))
```

Problem 5. Apply β-reductions to the following λ expressions as much as possible:

```
        (\lambdaz.z) (\lambday.y y)(\lambdax.x a)
= (\lambday.y y)(\lambdax.x a)
= ((\lambdax.x a) (\lambdax.x a))
=((\lambdax.x a) a)
=(a a)
```

Problem 6: Do it yourself. Plug in the values of plus, two, and three in (plus two three) and then solve as in problem 5 .

