
CSc 4330/6330 1-1 8/15
Programming Language Concepts

1. PRELIMINARIES



CSc 4330/6330 1-2 8/15
Programming Language Concepts

Reasons for Studying Concepts of Programming Languages

• Increased capacity to express ideas

Language constructs can often be simulated in languages that do not support
those constructs directly.

• Improved background for choosing appropriate languages

• Increased ability to learn new languages

• Better understanding of the significance of implementation

Helps develop the ability to use a language as it was designed to be used
Helps in fixing bugs
Helps in understanding relative efficiency of alternative constructs

• Better use of languages that are already known

• Overall advancement of computing

If those who choose languages were well informed, perhaps better languages
would eventually squeeze out poorer ones.



CSc 4330/6330 1-3 8/15
Programming Language Concepts

Programming Domains

• Scientific applications

Requirements: Simple data structures (arrays); large numbers of floating-point
calculations; efficiency.

Languages: Fortran, ALGOL 60.

• Business applications

Requirements: Report generation; character data; decimal arithmetic.
Languages: COBOL.

• Artificial intelligence (AI)

Requirements: Symbol manipulation; linked lists; ability to create and execute
code at run time.

Languages: Lisp, Scheme, Prolog.

• Web software

Languages: Java, JavaScript, PHP.



CSc 4330/6330 1-4 8/15
Programming Language Concepts

Language Evaluation Criteria

• Readability

The development of the software life cycle concept in the 1970s caused a greater
emphasis to be placed on maintenance, which is greatly affected by readability.

Readability must be considered in the context of the problem domain.

• Writability

Many of the same characteristics that influence readability also affect writabil-
ity.

Writability must also be considered in the context of the problem domain.

• Reliability

A program is reliable if it performs to its specifications under all conditions.

• Cost



CSc 4330/6330 1-5 8/15
Programming Language Concepts

Readability

• Overall simplicity

A simple language has a relatively small number of basic constructs.

Having multiple ways to accomplish the same effect (feature multiplicity) can
complicate a language. In Java, there are four ways to increment a variable:

count = count + 1
count += 1
count++
++count

Programmer-defined operator overloading can lead to complexity.

Too much simplicity can be a problem; a language may lack adequate control
structures and data structures.

• Orthogonality

Orthogonality means that a small set of primitive constructs can be combined in
a small number of ways—with no restrictions—to build the language’s control
structures and data structures.

Orthogonality is closely related to simplicity. A lack of orthogonality shows up
in the form of exceptions to the rules of a language.

C has numerous exceptions to its normal rules. For example, a function can
return a structure (record), but not an array.

Too much orthogonality can cause problems. ALGOL 68 is perhaps the orthogo-
nal language ever designed; unfortunately, it allows many unusual and confus-
ing combinations of features.



CSc 4330/6330 1-6 8/15
Programming Language Concepts

Readability (Continued)

• Data types

C89 lacks a Boolean type, forcing the programmer to use integers to represent
Boolean values. The meaning of an assignment such as timeOut = 1 is not
clear.

• Syntax design

Readability is affected by a language’s choice of special words.

Many languages have no special marker for the end of a control structure other
than the word end or a right brace. Ada, on the other hand, uses end if for the
end of an if statement and end loop for the end of a loop.

Some languages (including Fortran) allow special words to be used as identifi-
ers, which can be confusing.

Semantics (meaning) should follow directly from syntax (form).



CSc 4330/6330 1-7 8/15
Programming Language Concepts

Writability

• Simplicity and orthogonality

A large number of features can lead to misuse of some features and disuse of
others that are superior. Also, it is possible to use an unknown feature acciden-
tally.

Orthogonality helps writability, unless features are too orthogonal, in which case
errors may go undetected.

• Expressivity

A language is expressive if it provides features that make it easier to perform
common tasks.

APL provides powerful array operators. C++ provides increment and decrement
operators. Many languages provide a for statement, which is more convenient
than a while statement for writing counting loops.



CSc 4330/6330 1-8 8/15
Programming Language Concepts

Reliability

• Type checking

Type checking means to check for type errors, either during compilation or dur-
ing program execution.

Run-time type checking is expensive, so compile-time type checking is pre-
ferred. Also, compile-time type checking catches errors earlier, when they are
easier (and cheaper) to fix.

Java requires extensive type checking at compile time. Compilers for the origi-
nal C language, on the other hand, did not perform type checking on function
parameters, either at compile time or at run time.

• Exception handling

Exception handling allows a program to intercept run-time errors and take cor-
rective action.

Ada, C++, Java, and C# provide exception handling, but many older languages,
including C, do not.

• Aliasing

Aliasing occurs when there are two or more names for the same memory loca-
tion. Aliasing can lead to difficulties in understanding and debugging a program.

Most languages allow some kind of aliasing. In C, the use of unions and pointers
can lead to aliasing.

• Readability and writability

Programs written in a language that is not readable can be difficult to debug and
modify.

If a language lacks writability, programs written in it may be unnatural and more
likely to contain bugs.



CSc 4330/6330 1-9 8/15
Programming Language Concepts

Cost

• The cost of using a programming language is affected by many factors.

• Cost of training programmers

A simple and orthogonal language is usually easier to learn.

• Cost of writing programs

The cost of writing programs depends on the writability of the language, which
depends on how well the language suits the application.

A good programming environment can help reduce the cost of writing programs
(and the cost of training programmers).

• Cost of compiling programs

A language that compiles too slowly may be too expensive to use. Some early
Ada compilers were exceedingly slow.

• Cost of executing programs

Programs written in a language that requires many run-time type checks will pay
a performance penalty.

Some languages are interpreted rather than compiled, which can have a big
impact on execution time.

Programs can often be optimized for either time or space. Optimization gener-
ally increases the time required for compilation, however.

• Cost of language implementation system

For some languages, such as Java, good implementations are available at no
cost.

A language that requires an expensive implementation or expensive hardware
will probably never be widely used.



CSc 4330/6330 1-10 8/15
Programming Language Concepts

Cost (Continued)

• Cost of poor reliability

Programs that fail can cause huge costs in lost business, lawsuits, injuries, or
even deaths.

• Cost of maintaining programs

Most programs are modified over time to correct bugs, adjust to changes in spec-
ification, and add enhancements.

For large systems with long lifetimes, the cost of maintenance can be two to four
times as much as the cost of development.

The cost of maintenance depends heavily on language readability.

• The most important contributors to language cost are program development,
maintenance, and reliability. All three are functions of language readability and
writability.

• Other criteria for evaluating programming languages:

Portability (ease of moving programs from one implementation to another)
Generality (suitability for a wide range of applications)
Well-definedness (completeness and precision of the language’s definition)

• Portability and well-definedness are influenced by the existence of a standard for
the language.

• Standardization is a time-consuming and difficult process.



CSc 4330/6330 1-11 8/15
Programming Language Concepts

Influences on Language Design

• Programming languages have been strongly influenced by computer architecture
and by programming design methodologies.

• Computer architecture

Most popular languages of the past 60 years have been designed around the von
Neumann architecture. These languages are called imperative languages.

In the von Neumann architecture, instructions and data are stored in memory.
Instructions are fetched from memory and executed by a central processing unit
(CPU).

In an imperative language, variables represent memory cells. Assignment state-
ments model the movement of data from memory to the CPU and back again.



CSc 4330/6330 1-12 8/15
Programming Language Concepts

Influences on Language Design (Continued)

• Programming design methodologies

As programs became larger, methodologies began to emerge in the 1960s and
1970s to deal with the growing complexity of software:

Top-down design and stepwise refinement
Data abstraction
Object-oriented design

Each methodology had an effect on language design.

Smalltalk helped popularize object-oriented programming. Most imperative lan-
guages now include support for object-oriented programming.

More recently, growing interest in concurrency has had an influence on lan-
guage design. Java and C# support concurrent programming.



CSc 4330/6330 1-13 8/15
Programming Language Concepts

Language Categories

• Programming languages are often put into four categories:

Imperative
Functional
Logic
Object-oriented

• Functional languages provide only the ability to define functions and call them.
A pure functional language has no variables and no assignment statements.

• In a logic programming language, a program consists of a series of facts and
rules.

• Object-oriented languages are often extensions of imperative languages.

• Markup languages, such as HTML and XML are not programming languages.
However, programming capabilities can be added to these languages via JSTL
and XSLT.



CSc 4330/6330 1-14 8/15
Programming Language Concepts

Language Design Trade-Offs

• Language evaluation criteria are often self-contradictory. A language designer
must make trade-offs to achieve a satisfactory design.

• Conflict: Reliability versus cost of execution.

Java performs extensive run-time checks, including checking whether array sub-
scripts are within range. C omits such checks.

• Conflict: Writability versus readability.

APL provides a powerful set of array operators, making it an expressive lan-
guage and highly writable language (at least for programs that perform many
array operations), but not a readable one. APL programs rely on unusual opera-
tors, often combined into complex expressions.

• Conflict: Writability versus reliability.

Pointers in C++ are highly flexible, which makes it easier to write programs. On
the other hand, errors in pointer usage are common and can lead to severe prob-
lems.



CSc 4330/6330 1-15 8/15
Programming Language Concepts

Implementation Methods

• Most computers are capable of understanding only a primitive machine lan-
guage. As a result, executing programs written a high-level language requires a
language implementation system.

• Language implementation systems, in turn, rely on the services of the com-
puter’s operating system, creating a set of layers.

• In the 1950s, language implementation systems were very complex. Research
done in the 1960s and later has made them easier to write. Using special tools, it
is now possible to automatically generate large portions of a language imple-
mentation system.



CSc 4330/6330 1-16 8/15
Programming Language Concepts

Compilation

• One implementation method for a programming language is compilation, in
which a program written in a source language is translated to machine language
by a compiler.

• Compilation has the advantage of fast program execution.

• Many common languages, including C, C++, and COBOL, are compiled.

• Phases of a compiler:

Lexical analyzer—Gathers characters into lexical units (lexemes) and discards
comments.

Syntax analyzer (parser)—Checks the program for syntax errors. Collects lex-
emes into parse trees.

Intermediate code generator—Checks the program for semantic errors. Trans-
lates the program into an intermediate language, which often looks similar to
assembly language.

Optimizer—Attempts to improve programs by making them smaller or faster.
May be omitted.

Code generator—Translates intermediate code to machine language.

• All phases of a compiler use the symbol table, a data structure stores the names
used in the program and their attributes.

• Once a program has been compiled, many language implementation systems
require the use of a linker. A linker has several responsibilities:

Combine code from different modules that belong to a single program.
Include code for calls of library routines.
Include code for communication with the operating system.

The output of the linker is a load module or executable image.



CSc 4330/6330 1-17 8/15
Programming Language Concepts

Compilation (Continued)

• Diagram of the compilation process:



CSc 4330/6330 1-18 8/15
Programming Language Concepts

Pure Interpretation

• Pure interpretation involves the direction execution of a program by another pro-
gram, called an interpreter. With pure interpretation, the source program is not
translated to a lower-level form.

• Advantages of interpretation:

Good for debugging, since errors can be caught easily at run time and meaning-
ful error messages displayed.

• Disadvantages of interpretation:

Slow execution (10–100 times slower than a compiled program).
Often requires more space during execution.

• Pure interpretation was used for some early languages (including APL,
SNOBOL, and Lisp). By the 1980s, interpretation was relatively rare (although
BASIC interpreters were common on PCs).

• Interpretation has recently made a comeback, thanks to Web scripting languages
such as JavaScript and PHP.



CSc 4330/6330 1-19 8/15
Programming Language Concepts

Hybrid Implementation Systems

• A hybrid implementation system translates a source program into an interme-
diate language, which is then interpreted.

• Perl and Java both rely on a hybrid implementation system. A Java compiler
produces byte code that is later interpreted by an implementation of the Java
Virtual Machine.

• Java interpreters often perform Just-In-Time (JIT) compilation, translating byte
code instructions into machine code instructions during program execution.
Microsoft’s .NET platform uses a similar approach.



CSc 4330/6330 1-20 8/15
Programming Language Concepts

Preprocessors

• C and C++ rely on a preprocessor, which adds an extra step to the compilation
process.

• Preprocessor commands are embedded in the source code. The preprocessor
executes these commands and removes them from the program prior to compila-
tion.

• The following command causes the preprocessor to copy the file myLib.h into
the source code of a program:

#include "myLib.h"

• Preprocessor commands are also used to define macros:

#define max(A, B) ((A) > (B) ? (A) : (B))

The preprocessor will transform the statement

x = max(2 * y, z / 1.73);

into

x = ((2 * y) > (z / 1.73) ? (2 * y) : (z / 1.73));



CSc 4330/6330 1-21 8/15
Programming Language Concepts

Programming Environments

• A programming environment is a collection of tools used to develop software.

• A programming environment can be as simple as a text editor, a compiler, and a
linker.

• An IDE (integrated development environment) is a more elaborate environment
that provides a set of integrated tools accessed through a uniform user interface.

Microsoft’s Visual Studio supports several programming languages.


